具有線性相關(guān)關(guān)系的變量x,y,滿足一組數(shù)據(jù)如表所示.若y與x的回歸直線方程為y=2x則m的值是( 。
x0123
y-11m8
A、4
B、
9
2
C、5
D、6
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:利用平均數(shù)公式計(jì)算預(yù)報(bào)中心點(diǎn)的坐標(biāo),根據(jù)回歸直線必過樣本的中心點(diǎn)可得答案.
解答: 解:
.
x
=1.5;
.
y
=
8+m
4
,
∴樣本中心點(diǎn)是坐標(biāo)為(1.5,
8+m
4
),
∵回歸直線必過樣本中心點(diǎn),y與x的回歸直線方程為y=2x,
8+m
4
=3,
∴m=4
故選:A.
點(diǎn)評(píng):本題考查了線性回歸直線的性質(zhì),回歸直線必過樣本的中心點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=sinx
B、y=cosx
C、y=tanx
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|-
2
<x<1},則A∩B=( 。
A、∅
B、{x|-3<x<1}
C、{x|-
2
<x<1}
D、A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的橢圓
x2
a2
+
y2
b2
=1(a>b>0),焦距為2
3
,長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)O作兩條互相垂直的射線,與橢圓交于A,B兩點(diǎn).
(1)證明:點(diǎn)O到直線AB的距離為定值,并求出這個(gè)定值;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某三棱柱的正視圖中的實(shí)線部分是邊長(zhǎng)為4的正方形,俯視圖是等邊三角形,則該三棱柱的側(cè)視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是函數(shù)y=lnx圖象上的動(dòng)點(diǎn),則點(diǎn)P到直線y=x的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖①,在矩形ABCD中,AB=5,AD=
20
3
,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF
(1)求AE和BE的長(zhǎng);
(2)若將△ABF沿著射線BD方向平移.設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)若x1、x2∈[1,+∞),試比較ln(x1x2)與x1+x2-2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c.已知B=45°,C=120°,b=2,則c=( 。
A、1
B、
2
C、2
D、
6

查看答案和解析>>

同步練習(xí)冊(cè)答案