【題目】三角形的面積為,其中,,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )
A.
B.
C. ,(為四面體的高)
D. ,(,,,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:
, .
其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.
若對于任意的,總有,則稱集合具有性質(zhì).
(Ⅰ)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.
(Ⅱ)對任何具有性質(zhì)的集合,證明.
(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強市民的節(jié)能環(huán)保意識,汕頭市面向全市征召義務(wù)宣傳志愿者,從符合條件的 500 名志愿者中隨機抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:
,
(1)求圖中的值,并根據(jù)頻率分布直方圖估計這 500 名志愿者中年齡在歲的人數(shù);
(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場的宣傳活動,再從這 10 名志愿者中選取 3 名擔(dān)任主要負責(zé)人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖,問:
(1)在40名讀書者中年齡分布在的人數(shù);
(2)估計40名讀書者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產(chǎn)蛋量(單位: )和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根據(jù)散點圖判斷, 與哪一個更適宜作為該種雞的時段產(chǎn)蛋量關(guān)于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時段投入成本與的關(guān)系為,當(dāng)時段控制溫度為28℃時,雞的時段產(chǎn)蛋量及時段投入成本的預(yù)報值分別是多少?
附:①對于一組具有有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線 (是參數(shù))和定點,、是圓錐曲線的左、右焦點.
(1)求經(jīng)過點且垂直于直線的直線的參數(shù)方程;
(2)以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com