11.已知f(x)=3|x+2|-|x-4|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)設(shè)m,n,k為正實(shí)數(shù),且m+n+k=f(0),求證:mn+mk+nk≤$\frac{4}{3}$.

分析 (I)f(x)=3|x+2|-|x-4|.對(duì)x分類討論:當(dāng)x<-2時(shí);當(dāng)-2≤x≤4時(shí);當(dāng)x>4時(shí),即可得出不等式的解集.
(II)由m+n+k=f(0)=2,m,n,k為正實(shí)數(shù),平方展開(kāi)可得:m2+n2+k2+2mn+2mk+2nk=4,m2+n2+k2=4-2(mn+mk+nk),利用重要不等式的性質(zhì)可得:m2+n2+k2≥mn+nk+mk,代入解出即可得出.

解答 解:(I)∵f(x)=3|x+2|-|x-4|.
當(dāng)x<-2時(shí),-3(x+2)+(x-4)>2,解得x<-6.
∴x<-6
當(dāng)-2≤x≤4時(shí),3(x+2)+(x-4)>2,解得x>0,
∴0<x≤4.
當(dāng)x>4時(shí),3(x+2)-(x-4)>2,解得x>-4,
∴x>4.
綜上可得:不等式的解集是{x|x<-6,或x>0}.
證明:(II)m+n+k=f(0)=2,m,n,k為正實(shí)數(shù),
∴(m+n+k)2=4,展開(kāi)可得:m2+n2+k2+2mn+2mk+2nk=4,
∴m2+n2+k2=4-2(mn+mk+nk),
∵m2+n2≥2mn,m2+k2≥2mk,n2+k2≥2nk,
∴m2+n2+k2≥mn+nk+mk,
∴4-2(mn+mk+nk)≥mn+nk+mk,
∴mn+mk+nk$≤\frac{4}{3}$,當(dāng)且僅當(dāng)m=n=k=$\frac{2}{3}$時(shí)取等號(hào).

點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法、重要不等式應(yīng)用、乘法公式、不等式的解法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知復(fù)數(shù)z1=2+a2+i,z2=3a+ai(a為實(shí)數(shù),i虛數(shù)單位)且z1+z2是純虛數(shù).
(1)求a的值,并求z12的共軛復(fù)數(shù);
(2)求$\frac{{z}_{1}}{{z}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,三棱柱ABC一A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1中點(diǎn),F(xiàn)在AB上,且CF⊥AB,AC=BC=1,AA1=3.
(I)求證:CF∥平面AEB1;
(Ⅱ)求平面ABC與平面AB1E所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,則過(guò)橢圓$\left\{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}\right.$ (φ為參數(shù))的右焦點(diǎn)且與直線$\left\{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}\right.$(t為參數(shù))平行的直線被橢圓截得的弦長(zhǎng)為$\frac{90\sqrt{14}}{61}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,棱長(zhǎng)為3的正方體的頂點(diǎn)A在平α上,三條棱AB、AC、AD都在平面α的同側(cè).若頂點(diǎn)B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標(biāo)系,設(shè)平面α的一個(gè)法向量為(x0,y0,z0),若x0=1,則y0=$\sqrt{2}$,z0=$\sqrt{6}$,且頂點(diǎn)D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.正方體ABCD-A1B1C1D1中,M,N,Q分別是棱D1C1,A1D1,BC的中點(diǎn),點(diǎn)P在對(duì)角線BD1上,給出以下命題:
①當(dāng)P在BD1上運(yùn)動(dòng)時(shí),恒有MN∥面APC;
②若A,P,M三點(diǎn)共線,則$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,則C1Q∥面APC;
④過(guò)點(diǎn)P且與直線AB1和A1C1所成的角都為60°的直線有且只有3條.
其中正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.畫出函數(shù)y=$\frac{x+3}{x+2}$的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=$\sqrt{3}$,且b2+c2=3+bc,則角A為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|y=lgx},B={-2,-1,0,1,2},則(∁RA)∩B=( 。
A.{-2,-1}B.{-2,-1,0}C.{0,1,2}D.{1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案