3.畫出函數(shù)y=$\frac{x+3}{x+2}$的圖象.

分析 利用圖象的平移即可畫出相應(yīng)的圖象.

解答 解:y=$\frac{x+3}{x+2}$=1+$\frac{1}{x+2}$,
其圖象是由y=$\frac{1}{x}$的圖象(紅色曲線),先向左平移2個(gè)單位,再向上平移一個(gè)單位得到的,其圖象如圖所示

點(diǎn)評(píng) 本題考查了函數(shù)圖象的畫法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知在實(shí)數(shù)集R上的可導(dǎo)函數(shù)f(x),滿足f(x+2)是奇函數(shù),且$\frac{1}{f′(x)}$>2,則不等式f(x)>$\frac{1}{2}$x-1的解集是(  )
A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若函數(shù)f(x)=2x+x-2016的一個(gè)零點(diǎn)x0∈(n,n+1),則正整數(shù)n=( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=3|x+2|-|x-4|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)設(shè)m,n,k為正實(shí)數(shù),且m+n+k=f(0),求證:mn+mk+nk≤$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知“0<t<m(m>0)”是“函數(shù)f(x)=-x2-tx+3t在區(qū)間(0,2)上只有一個(gè)零點(diǎn)”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(cos25°,sin25°),$\overrightarrow$=(cos25°,sin155°),則$\overrightarrow{a}$•$\overrightarrow$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}{x+3y-4≤0}\\{3x+y+4≥0}\\{x-y≤0}\end{array}\right.$,若z=$\frac{y}{x+3}$,則z的最大值和最小值為( 。
A.最大值是2,最小值是-$\frac{1}{2}$B.最大值是3,最小值是-$\frac{1}{2}$
C.最大值是2,最小值是-$\frac{1}{3}$D.最大值是3,最小值是-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)多面體的三視圖如圖所示,則該多面體的表面積為( 。
A.$\frac{22}{3}$B.21C.21+$\frac{\sqrt{3}}{2}$D.21+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)已知函數(shù)f(x)=|x+2a|+|x-$\frac{2}{a}$|≥5(a>0)對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)g(x)=3$\sqrt{x-3}$+4$\sqrt{4-x}$的最大值及g(x)取最大值時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案