4.某電商對10000名網(wǎng)購者2015年度消費情況進行統(tǒng)計,其消費頻率分布直方圖如圖,則在這些網(wǎng)購者中,消費金額在[0.5,0.9]內(nèi)的人數(shù)為( 。
A.2000B.4500C.6000D.7500

分析 根據(jù)頻率和為1算出a的值,再求出消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的頻率與頻數(shù).

解答 解:由題意,根據(jù)頻率和為1得
(1.5+2.5+a+2.0+0.8+0.2)×0.1=1,
解得a=3;
所以消費金額在[0.5,0.9]內(nèi)的人數(shù)為
(3+2.0+0.8+0.2)×0.1×10000=6000.
故選:C.

點評 本題考查了利用頻率分布直方圖求頻率和頻數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.9顆珍珠中有一顆是假的,且真珍珠一樣重,假珍珠比真珍珠要輕.如果用一架天平至少要稱( 。┐,就一定可以找出這顆假珍珠.
A.5B.4C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)y=sinx(x∈[0,π])圖象上兩個點A(x1,y1),B(x2,y2)(x1<x2)滿足AB∥x軸,O是坐標原點,若點C的坐標為(π,0),則四邊形OABC的面積最大時,tanx1-x2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}中,a1=2,a2=3,且an+1=2an+3an-1(n≥2).
(1)設(shè)bn=an+1+an,證明{bn}是等比數(shù)列.
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\frac{1}{3}$x3-(a+$\frac{1}{2}$)x2+(a2+a)x-$\frac{1}{2}$a2+$\frac{1}{2}$有兩個以上的零點,則a的取值范圍是(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.$(-\root{3}{{\frac{3}{2}}},-1)$D.$(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等比數(shù)列{an}的前n項和為Sn,S4=1,S8=17,則首項a1=$\frac{1}{15}$或-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)$\frac{1+i}{1-i}$(I是虛數(shù)單位)等于( 。
A.1B.2C.iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{5}}}{5}$,右焦點F(1,0).
(1)求橢圓方程;
(2)過F作斜率為1的直線l與橢圓C交于A,B兩點,P為橢圓上一動點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知焦點在x軸上的雙曲線漸近線方程為$y=±\frac{2}{3}x$,則此雙曲線的離心率等于( 。
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案