如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
(1)詳見解析,(2)詳見解析.
解析試題分析:(1)證線面平行找線線平行,本題有G為AD中點(diǎn),F(xiàn)為BD中點(diǎn)條件,可利用平行四邊形性質(zhì).即取PD中點(diǎn)H,AD中點(diǎn)G,易得EFGH為平行四邊形,從而有EF∥GH.寫定理?xiàng)l件時(shí)需完整,因?yàn)槿羧鄙貳F面PAD,,則EF可能在面PAD內(nèi),若缺少GH面PAD,則EF與面PAD位置關(guān)系不定.(2)證面面垂直關(guān)鍵找線面垂直.可由面面垂直性質(zhì)定理探討,因?yàn)閭?cè)面PAD⊥底面ABCD,CD垂直AD,而AD為兩平面的交線,所以應(yīng)有CD垂直于平面PAD,這就是本題證明的目標(biāo).
試題解析:(1)設(shè)PD中點(diǎn)為H,AD中點(diǎn)為G,連結(jié)FG,GH,HE
G為AD中點(diǎn),F(xiàn)為BD中點(diǎn),GF,
同理EH,
ABCD為矩形,ABCD,GFEH,EFGH為平行四邊形
EF∥GH,又∥面PAD.
(2)面PAD⊥面ABCD,面PAD面ABCD=AD,又ABCD為矩形,
CD⊥AD,CD⊥面PAD
又CD面PCD,面PAD⊥面PCD.
考點(diǎn):線面平行判定定理,面面垂直判定與性質(zhì)定理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點(diǎn).
(1)求證:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,已知ABC是邊長(zhǎng)為l的等邊三角形,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=.
(1)證明:DE//平面BCF;
(2)證明:CF平面ABF;
(3)當(dāng)AD=時(shí),求三棱錐F-DEG的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,,點(diǎn)E在棱PB上.
(1)求證:平面;
(2)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,E是以AB為直徑的半圓弧上異于A,B的點(diǎn),矩形ABCD所在平面垂直于該半圓所在的平面,且AB=2AD=2。
(1).求證:EA⊥EC;
(2).設(shè)平面ECD與半圓弧的另一個(gè)交點(diǎn)為F。
①求證:EF//AB;
②若EF=1,求三棱錐E—ADF的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,,∥,.
(1)求證:;
(2)求直線與平面所成角的正切值;
(3)在上找一點(diǎn),使得∥平面ADEF,請(qǐng)確定M點(diǎn)的位置,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點(diǎn).
(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點(diǎn)M、N分別是PA、PB的中點(diǎn).求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com