如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,,點(diǎn)E在棱PB上.

(1)求證:平面
(2)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB
所成的角的大小.

(1)見解析(2)

解析試題分析:(1)利用面面垂直的判定定理證明;(2)利用直線與平面所成的角的定義求解
試題解析:(1)∵四邊形ABCD是正方形,,
,
,
∴平面.
(2)設(shè),連接OE,
由(1)知于O,
∴∠AEO為AE與平面PDB所的角,
∴O,E分別為DB、PB的中點(diǎn),
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
,即AE與平面PDB所成的角的大小為.
考點(diǎn):面面垂直的判定定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,底面,的中點(diǎn), 的中點(diǎn),,.

(1)求證:平面;
(2)求與平面成角的正弦值;
(3)設(shè)點(diǎn)在線段上,且,平面,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和兩平面的交線平行.
請(qǐng)對(duì)上面定理加以證明,并說出定理的名稱及作用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的多面體中,四邊形為正方形,四邊形是直角梯形,,平面

(1)求證:平面;
(2)求平面與平面所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在五面體中,四邊形是邊長(zhǎng)為的正方形,平面,,.

(1)求證:平面;
(2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。

(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點(diǎn).

⑴求證:平面PAD⊥面PBD;
⑵當(dāng)Q在什么位置時(shí),PA∥平面QBD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。

(1)求證:平面
(2)求二面角的大。
(3)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C中點(diǎn).求證:

(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案