【題目】確定函數(shù)的定義域、值域、單調(diào)區(qū)間、奇偶性、周期性.

【答案】定義域:;值域:;單調(diào)區(qū)間:的遞減區(qū)間是;遞增區(qū)間;奇偶性:非奇非偶函數(shù);周期性:周期函數(shù),且最小正周期是

【解析】

化簡(jiǎn)函數(shù)式為,根據(jù)對(duì)數(shù)函數(shù)的真數(shù),結(jié)合正弦函數(shù)的性質(zhì),可得定義域;由正弦函數(shù)的有界性和對(duì)數(shù)函數(shù)的單調(diào)性,可得的值域;利用復(fù)合函數(shù)單調(diào)性增減原則,結(jié)合正弦型函數(shù)的單調(diào)性,即可求出的單調(diào)性;先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),否則就是非奇非偶,若對(duì)稱(chēng),再判斷的關(guān)系;的周期取決于的周期.

由已知.

(1)欲使有意義,必須,

,

,

所以的定義域?yàn)?/span>;

2,

,所以的值域?yàn)?/span>.

3)考慮到,即.

當(dāng),即時(shí),

單調(diào)遞增,單調(diào)遞減,

所以的遞減區(qū)間是.

同理可求,的遞增區(qū)間.

4)由于的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),所以是非奇非偶函數(shù).

5)由于是周期為的函數(shù),

所以是周期函數(shù),且最小正周期是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,底面是正方形,側(cè)面底面,,,的中點(diǎn),點(diǎn)上,且.

1)求證:;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的積為,記,.

1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.

2)若,,且

①求數(shù)列的通項(xiàng)公式.

②記,那么數(shù)列中是否存在兩項(xiàng),(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求s,t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)FTF的垂線交橢圓C于點(diǎn)PQ.

i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某百貨商店今年春節(jié)期間舉行促銷(xiāo)活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開(kāi)展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(1)經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購(gòu)物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購(gòu)物券;抽中“謝謝惠顧”,則沒(méi)有購(gòu)物券.已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為.現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購(gòu)物券總金額的分布列及數(shù)學(xué)期望.

參考公式:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上不具有單調(diào)性.

(1)求實(shí)數(shù)的取值范圍;

(2)若的導(dǎo)函數(shù),設(shè),試證明對(duì)任意兩個(gè)不相等正數(shù),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示的平面五邊形中,,,,,現(xiàn)將圖甲所示中的沿邊折起,使平面平面得如圖乙所示的四棱錐.在如圖乙所示中


1)求證:平面;

2)求二面角的大;

3)在棱上是否存在點(diǎn)使得與平面所成的角的正弦值為?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若直線l交曲線CAB兩點(diǎn),交x軸于點(diǎn)P,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案