【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2 )=( )

A.
B.
C.﹣
D.

【答案】C
【解析】解:由圖象可得A=3, =4( ),解得ω=2,
故f(x)=3sin(2x+φ),代入點( ,﹣3)可得3sin( +φ)=﹣3,
故sin( +φ)=﹣1, +φ=2kπ﹣ ,∴φ=2kπ﹣ ,k∈Z
結(jié)合0<φ<π可得當(dāng)k=1時,φ= ,故f(x)=3sin(2x+ ),
∵f(α)=3sin(2α+ )=1,∴sin(2α+ )=
∵α∈(0, ),∴2α+ ∈( , ),
∴cos(2 )=﹣ =﹣ ,
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點A、B、C是拋物線y2=4x上不同的三點,若點F(1,0)滿足 ,則△ABF面積的最大值為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);

(2)我出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速;

(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg,

(1)求f(x)的定義域并判斷它的奇偶性.

(2)判斷f(x)的單調(diào)性并用定義證明.

(3)解關(guān)于x的不等式f(x)+f(2x2﹣1)0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知aR,函數(shù)f(x)=log

(1)當(dāng)a=1時,解不等式f(x)1;

(2)若關(guān)于x的方程g(x)=f(x)﹣log3(ax+1)有且只有一個零點,求a的取值范圍;

(3)設(shè)0a1,若對任意t,函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:21~30,31~40(單位:歲),統(tǒng)計這兩個年齡段選手答對歌曲名稱與否的人數(shù)如圖所示.
(參考公式:K2= ,其中n=a+b+c+d)

(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認為答對歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)

P(K2≥k0

0.1

0.05

0.01

0.005

k0

2.706

3.841

6.635

7.879


(2)在統(tǒng)計過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運選手,求3名幸運選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù),若對于定義域中的任意,都有 恒成立,則稱函數(shù)為“爬坡函數(shù)”.

(Ⅰ)證明:函數(shù)是“爬坡函數(shù)”;

(Ⅱ)若函數(shù)是“爬坡函數(shù)”,求實數(shù)的取值范圍;

(Ⅲ)若對任意的實數(shù),函數(shù)都不是“爬坡函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足xf′(x)﹣f(x)>0,當(dāng)0<m<n<1時,下面選項中最大的一項是(
A.
B.logmn?f(lognm)
C.
D.lognm?f(logmn)

查看答案和解析>>

同步練習(xí)冊答案