【題目】已知定義在R上的函數(shù)f(x)滿足xf′(x)﹣f(x)>0,當(dāng)0<m<n<1時,下面選項中最大的一項是( )
A.
B.logmn?f(lognm)
C.
D.lognm?f(logmn)
【答案】B
【解析】解:構(gòu)造函數(shù)F(x)= ,
∵xf′(x)﹣f(x)>0,
則F′(x)= >0,
即F(x)在R上是增函數(shù),
又由0<m<n<1,知mn , nm<1,
而logm(n)<logm(m)=1,
logn(m)>logn(n)=1,
故在mn<nm , logm(n),logn(m)中l(wèi)ogn(m)最大,
故F(logn(m))=logmnf(lognm)最大
故選:B.
【考點精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2 )=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱豬ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E為棱AA1的中點.
(1)證明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是計算 + + +…+ + 的值的程序框圖,其中判斷框內(nèi)應(yīng)填入的是( )
A.i≤4030?
B.i≥4030?
C.i≤4032?
D.i≥4032?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,若在上為增函數(shù),則稱為“一階比增函數(shù)”.
(1)若是“一階比增函數(shù)”,求實數(shù)a的取值范圍。
(2)若是“一階比增函數(shù)”,求證:對任意,,總有;
(3)若是“一階比增函數(shù)”,且有零點,求證:關(guān)于x的不等式有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的極大值和極小值;
(2)若在處的切線與y軸垂直,直線y=m與的圖象有三個不同的交點,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在x軸正半軸上的圓C與直線相切,與y軸交于M,N兩點,且.
Ⅰ求圓C的標(biāo)準(zhǔn)方程;
Ⅱ過點的直線l與圓C交于不同的兩點D,E,若時,求直線l的方程;
Ⅲ已知Q是圓C上任意一點,問:在x軸上是否存在兩定點A,B,使得?若存在,求出A,B兩點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4人去旅游,旅游地點有A,B兩個地方可以選擇,但4人都不知道去哪里玩,于是決定通過擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時去A地,擲出其他的則去B地.
(1)求這4個人恰好有1個人去A地的概率;
(2)用X,Y分別表示這4個人中去A,B兩地的人數(shù),記ξ=XY,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com