【題目】如圖,四棱豬ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E為棱AA1的中點.

(1)證明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.

【答案】
(1)

證明:∵四棱錐ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,

AD=CD=1,A1A=AB=2,E為棱AA1的中點.

∴以點A為原點,AD,AA1,AB分別為x,y,zlm,建立空間直角坐標(biāo)系,如圖,

依題意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).

=(1,0,﹣1), =(﹣1,1,﹣1),

=(1,0,﹣1)(﹣1,1,﹣1)=0.

∴B1C1⊥CE.


(2)

解: =(1,﹣2,﹣1),

設(shè)平面B1CE的法向量為 =(x,y,z),

,取z=1,得x=﹣3,y=﹣2.∴ =(﹣3,﹣2,1).

由(1)知B1C1⊥CE,又CC1⊥B1C1,∴B1C1⊥平面CEC1

=(1,0,﹣1)為平面CEC1的一個法向量,

cos< >= = =﹣ ,

∵二面角B1﹣CE﹣C1的平面角為銳角,

∴二面角B1﹣CE﹣C1的余弦值為


【解析】(1)由題意可知,AD,AB,AA1兩兩互相垂直,以a為坐標(biāo)原點建立空間直角坐標(biāo)系,標(biāo)出點的坐標(biāo)后,求出 ,由 =0得到B1C1⊥CE;(2)求出平面B1CE和平面CEC1的一個法向量,先求出兩法向量所成角的余弦值,由此能求出二面角B1﹣CE﹣C1的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )

(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);

(2)我出發(fā)后,心情輕松,緩緩行進(jìn),后來為了趕時間開始加速;

(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:21~30,31~40(單位:歲),統(tǒng)計這兩個年齡段選手答對歌曲名稱與否的人數(shù)如圖所示.
(參考公式:K2= ,其中n=a+b+c+d)

(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為答對歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)

P(K2≥k0

0.1

0.05

0.01

0.005

k0

2.706

3.841

6.635

7.879


(2)在統(tǒng)計過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運選手,求3名幸運選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù),若對于定義域中的任意,都有 恒成立,則稱函數(shù)為“爬坡函數(shù)”.

(Ⅰ)證明:函數(shù)是“爬坡函數(shù)”;

(Ⅱ)若函數(shù)是“爬坡函數(shù)”,求實數(shù)的取值范圍;

(Ⅲ)若對任意的實數(shù),函數(shù)都不是“爬坡函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面;

(2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,集合.

(1)若“”是“”的必要條件,求實數(shù)的取值范圍;

(2)若中只有一個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)集由實數(shù)構(gòu)成,且滿足:若),則.

(1)若,試證明中還有另外兩個元素;

(2)集合是否為雙元素集合,并說明理由;

(3)若中元素個數(shù)不超過8個,所有元素的和為,且中有一個元素的平方等于所有元素的積,求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足xf′(x)﹣f(x)>0,當(dāng)0<m<n<1時,下面選項中最大的一項是(
A.
B.logmn?f(lognm)
C.
D.lognm?f(logmn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表

參考公式: .

根據(jù)參考公式,以求得

1)求關(guān)于的線性回歸方程;

2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤取到最大值?(保留兩位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案