【題目】已知拋物線Cy2=2pxp0的焦點為F,過F且斜率為的直線l與拋物線C交于A,B兩點,Bx軸的上方,且點B的橫坐標(biāo)為4

1)求拋物線C的標(biāo)準(zhǔn)方程;
2)設(shè)點P為拋物線C上異于AB的點,直線PAPB分別交拋物線C的準(zhǔn)線于EG兩點,x軸與準(zhǔn)線的交點為H,求證:HGHE為定值,并求出定值.

【答案】1y2=4x

2,證明見解析

【解析】

1)由AB的斜率為,可得,解得p=2即可;(2)設(shè)點,可得,,即可得HGHE=

1)由題意得:,
因為點B的橫坐標(biāo)為4,且Bx軸的上方,所以
因為AB的斜率為,
所以,整理得:,
,得p=2,
拋物線C的方程為:y2=4x
2)由(1)得:B4,4),F10),準(zhǔn)線方程x=1,
直線l的方程:,
,解得x=4,于是得
設(shè)點,又題意n≠1n≠-4,
所以直線PA,令x=1,得,
,
同理可得:
HGHE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點滿足: .

1)求動點的軌跡的方程;

2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù)

(1)若曲線處的切線方程為求實數(shù)的值;

(2)① 時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;

,對一切正實數(shù)恒成立,求實數(shù)的最大值(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2,BCADABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC

2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域上是增函數(shù),求的取值范圍;

(2)若恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考慮某長方體的三個兩兩相鄰的面上的三條對角線及體對角線(共四條線段),則正確的命題是( )

A. 必有某三條線段不能組成一個三角形的三邊

B. 任何三條線段都可組成三角形,其每個內(nèi)角都是銳角

C. 任何三條線段都可組成三角形,其中必有一個是鈍角三角形

D. 任何三條線段都可組成三角形,其形狀是“銳角的”或是“非銳角的”,隨長方體的長、寬、高而變化,不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是平行四邊形,的兩個三等分點.

(1)求證平面;

(2)若平面平面,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案