【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.

A.①③
B.①④
C.②③
D.②④

【答案】B
【解析】解:①由條形統(tǒng)計(jì)圖可得:年用水量不超過180m3的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),
×100%=80%,故年用水量不超過180m3的該市居民家庭按第一檔水價(jià)交費(fèi),正確;
②∵年用水量超過240m3的該市居民家庭有(0.15+0.15+0.05)=0.35(萬),
×100%=7%≠5%,故年用水量超過240m3的該市居民家庭按第三檔水價(jià)交費(fèi),故此選項(xiàng)錯(cuò)誤;
③∵5萬個(gè)數(shù)據(jù)的中間是第25000和25001的平均數(shù),
∴該市居民家庭年用水量的中位數(shù)在120﹣150之間,故此選項(xiàng)錯(cuò)誤;
④由①得,該市居民家庭年用水量的平均數(shù)不超過180,正確,
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用頻數(shù)分布直方圖,掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過點(diǎn),原點(diǎn)O到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為.

(1)求橢圓E的方程;

(2)A為橢圓E上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足,過點(diǎn)P的直線交橢圓EB,C兩點(diǎn),且,若直線OA,OB的斜率之積為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時(shí)間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價(jià)m(元/件)

當(dāng)1≤x≤20時(shí),m=20+ x

當(dāng)21≤x≤30時(shí),m=10+


(1)請計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】百子回歸圖是由1,2,3…,100無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19 99 12 20”標(biāo)示澳門回歸日期,最后一行中間兩位“23 50”標(biāo)示澳門面積,…,同時(shí)它也是十階幻方,其每行10個(gè)數(shù)之和,每列10個(gè)數(shù)之和,每條對(duì)角線10個(gè)數(shù)之和均相等,則這個(gè)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且

I)求數(shù)列的通項(xiàng)公式;

II設(shè),求數(shù)列的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和,且2的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案