【題目】某網(wǎng)店嘗試用單價(jià)隨天數(shù)而變化的銷(xiāo)售模式銷(xiāo)售一種商品,利用30天的時(shí)間銷(xiāo)售一種成本為10元/件的商品售后,經(jīng)過(guò)統(tǒng)計(jì)得到此商品單價(jià)在第x天(x為正整數(shù))銷(xiāo)售的相關(guān)信息,如表所示:

銷(xiāo)售量n(件)

n=50﹣x

銷(xiāo)售單價(jià)m(元/件)

當(dāng)1≤x≤20時(shí),m=20+ x

當(dāng)21≤x≤30時(shí),m=10+


(1)請(qǐng)計(jì)算第幾天該商品單價(jià)為25元/件?
(2)求網(wǎng)店銷(xiāo)售該商品30天里所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】
(1)

解:分兩種情況

①當(dāng)1≤x≤20時(shí),將m=25代入m=20+ x,解得x=10.

②當(dāng)21≤x≤30時(shí),25=10+ ,解得x=28.

經(jīng)檢驗(yàn)x=28是方程的解.

∴x=28.

答:第10天或第28天時(shí)該商品為25元/件.


(2)

解:分兩種情況

①當(dāng)1≤x≤20時(shí),y=(m﹣10)n=(20+ x﹣10)(50﹣x)=﹣ x2+15x+500,

②當(dāng)21≤x≤30時(shí),y=(10+ ﹣10)(50﹣x)= -420

綜上所述:


(3)

解:①當(dāng)1≤x≤20時(shí)

由y=﹣ x2+15x+500=﹣ (x﹣15)2+ ,

∵a=﹣ <0,

∴當(dāng)x=15時(shí),y最大值= ,

②當(dāng)21≤x≤30時(shí)

由y= ﹣420,可知y隨x的增大而減小

∴當(dāng)x=21時(shí),y最大值= ﹣420=580元

∴第15天時(shí)獲得利潤(rùn)最大,最大利潤(rùn)為612.5元.


【解析】本題考查二次函數(shù)的應(yīng)用、反比例函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建函數(shù),利用二次函數(shù)的性質(zhì)解決問(wèn)題,屬于中考?碱}型.
(1)分兩種情形分別代入解方程即可;
(2)分兩種情形寫(xiě)出所獲利潤(rùn)y(元)關(guān)于x(天)的函數(shù)關(guān)系式即可;
(3)分兩種情形根據(jù)函數(shù)的性質(zhì)解決問(wèn)題即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示

(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面

底面,且, 、分別為、的中點(diǎn).

1)求證: 平面

2)求證:面平面;

3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)內(nèi)某知名連鎖店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程

(2)若該分店此次抽獎(jiǎng)活動(dòng)自開(kāi)業(yè)始,持續(xù)10天,參加抽獎(jiǎng)的每位顧客抽到一等獎(jiǎng)(價(jià)值200元獎(jiǎng)品)的概率為,抽到二等獎(jiǎng)(價(jià)值100元獎(jiǎng)品)的概率為,抽到三等獎(jiǎng)(價(jià)值10元獎(jiǎng)品)的概率為,試估計(jì)該分店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)送出多少元獎(jiǎng)品?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計(jì)

1

(1)求出表中及圖中的值;

(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列, ,滿足:對(duì)于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}是等差數(shù)列,前n項(xiàng)和為Sn , {bn}是單調(diào)遞增的等比數(shù)列,b1=2是a1與a2的等差中項(xiàng),a3=5,b3=a4+1,若當(dāng)n≥m時(shí),Sn≤bn恒成立,則m的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案