【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進(jìn)一步的統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程;

(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為,抽到三等獎(價值10元獎品)的概率為,試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?

參考公式:,

【答案】(1)(2)8800元

【解析】試題分析:(1)先求平均數(shù),代入公式,利用,即得線性回歸方程,(2)先利用線性回歸方程估計參加抽獎的人數(shù),得到此次抽獎活動總?cè)藬?shù);再利用數(shù)學(xué)期望公式求每位顧客抽獎所獲獎金數(shù),最后與總?cè)藬?shù)的積為此次抽獎活動總獎金.

試題解析:(Ⅰ)依題意:,

,,

,

關(guān)于的線性回歸方程為.

(Ⅱ)參加抽獎的每位顧客獲得獎品金額為,的分布列為

(元).

關(guān)于的回歸直線方程,預(yù)測時,,時,,時,,則此次活動參加抽獎的人數(shù)約為人.

(元)

所以估計該分店為此次抽獎活動應(yīng)準(zhǔn)備8800元獎品.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)若函數(shù),對于曲線上的兩個不同的點, ,記直線的斜率為,若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

當(dāng)1≤x≤20時,m=20+ x

當(dāng)21≤x≤30時,m=10+


(1)請計算第幾天該商品單價為25元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)),記的導(dǎo)函數(shù)為

(1)證明:當(dāng)時,上單調(diào)遞增;

(2)若處取得極小值,求的取值范圍;

(3)設(shè)函數(shù)的定義域為,區(qū)間,若上是單調(diào)函數(shù),

則稱上廣義單調(diào).試證明函數(shù)上廣義單調(diào).

查看答案和解析>>

同步練習(xí)冊答案