16.已知定義在R上的函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),滿足g′(x)-g(x)<0,若函數(shù)g(x)的圖象關(guān)于直線x=2對(duì)稱,且g(4)=1,則不等式$\frac{g(x)}{e^x}$>1的解集為(  )
A.(-2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

分析 構(gòu)造函數(shù)f(x)=$\frac{g(x)}{{e}^{x}}$,由已知可得f(x)為定義域內(nèi)的減函數(shù),再由已知求得f(0),然后利用函數(shù)的單調(diào)性即可求解不等式$\frac{g(x)}{e^x}$>1的解集.

解答 解:令f(x)=$\frac{g(x)}{{e}^{x}}$,則f′(x)=$\frac{g′(x)-g(x)}{{e}^{x}}$,
∵g′(x)-g(x)<0,∴f′(x)<0,
得函數(shù)f(x)為定義域內(nèi)的減函數(shù),
又函數(shù)g(x)的圖象關(guān)于直線x=2對(duì)稱,且g(4)=1,
∴g(2+x)=g(2-x),則g(4)=g(0)=1,
而當(dāng)x=0時(shí),f(0)=$\frac{g(0)}{{e}^{0}}$=1.
不等式$\frac{g(x)}{e^x}$>1,即f(x)>f(0),
解得:x<0,
∴不等式$\frac{g(x)}{e^x}$>1的解集為(-∞,0).
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)f(x)是解題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-13n$,則數(shù)列{|an|}的前10項(xiàng)和等于112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若偶函數(shù)f(x),當(dāng)x∈R+時(shí),滿足f′(x)>$\frac{f(x)}{x}$,且f(1)=0,則不等式$\frac{f(x)}{x}$≥0的解集是[-1,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,直四棱柱ABCD-A1B1C1D1底面是邊長(zhǎng)為1的正方形,高AA1=$\sqrt{2}$,點(diǎn)A是平面α內(nèi)的一個(gè)定點(diǎn),AA1與α所成角為$\frac{π}{3}$,點(diǎn)C1在平面α內(nèi)的射影為P,當(dāng)四棱柱ABCD-A1B1C1D1按要求運(yùn)動(dòng)時(shí)(允許四棱柱上的點(diǎn)在平面α的同側(cè)或異側(cè)),點(diǎn)P所經(jīng)過的區(qū)域的面積=$2\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.由tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$,可得:tanα+tanβ=tan(α+β)[1-tanα•tanβ],根據(jù)此推理及公式解決下列問題:
(1)若A+B=225°,則(1+tanA)(1+tanB)2
(2)不用計(jì)算器求值:(1+tan1°)(1+tan2°)(1+tan3°)•…•(1+tan44°)=222

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=ex,g(x)=1nx.
(I)分別求函數(shù)y=f(x)與y=g(x)圖象與坐標(biāo)軸交點(diǎn)處的切線方程;
(Ⅱ)設(shè)h(x)=f(x)-g(x),若函數(shù)h(x)在x=x0處取得極小值,求證:x0∈($\frac{1}{2}$,1),且h(x0)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=sin(πx-$\frac{π}{3}}$)-1是( 。
A.周期為1的奇函數(shù)B.周期為2的偶函數(shù)
C.周期為1的非奇非偶函數(shù)D.周期為2的非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)y=f(x)的最小值等于4,且f(0)=f(2)=6.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-kx,且函數(shù)g(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)h(x)=f(2x),求當(dāng)x∈[-1,2]時(shí),函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的離心率為$\frac{\sqrt{3}}{2}$,P(m,n)為圓x2+y2=16上任意一點(diǎn),過P作橢圓的切線PA,PB,設(shè)切點(diǎn)分別為A(x1,y1),B(x2,y2).
(1)證明:切線PA的方程為$\frac{{x}_{1}x}{4}$+y1y=1;
(2)設(shè)O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案