設(shè)分別是橢圓:的左、右焦點(diǎn),過傾斜角為的直線 與該橢圓相交于P,兩點(diǎn),且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)點(diǎn) 滿足,求該橢圓的方程.

(1) (2)

解析試題分析:解:(Ⅰ)直線斜率為1,設(shè)直線的方程為,其中. 2分
設(shè),則兩點(diǎn)坐標(biāo)滿足方程組
化簡得 4分

因?yàn),所?img src="http://thumb.zyjl.cn/pic5/tikupic/5f/0/8yc1r.png" style="vertical-align:middle;" />. 6分
,故
所以橢圓的離心率.  8分
(Ⅱ)設(shè)的中點(diǎn)為,由(1)知
 10分
.   12分
,得,從而.故橢圓的方程為 14分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,則
是否為定值?若是,求出其值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓與直線相交于兩點(diǎn).
(1)若橢圓的半焦距,直線圍成的矩形的面積為8,
求橢圓的方程;
(2)若為坐標(biāo)原點(diǎn)),求證:;
(3)在(2)的條件下,若橢圓的離心率滿足,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)F為拋物線E: 的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),已知 .
(1)求拋物線方程;
(2)設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線相交于點(diǎn)Q。證明以PQ為直徑的圓恒過y軸上某定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動點(diǎn)到點(diǎn)的距離等于它到直線的距離,記點(diǎn)的軌跡為曲
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn),,上的不同三點(diǎn),且滿足.證明: 不可能為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,雙曲線與拋物線相交于,直線AC、BD的交點(diǎn)為P(0,p)。

(I)試用m表示
(II)當(dāng)m變化時(shí),求p的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形中,分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè),

(Ⅰ)求直線的交點(diǎn)的軌跡的方程;
(Ⅱ)過圓上一點(diǎn)作圓的切線與軌跡交于兩點(diǎn),若,試求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,直線軸交于點(diǎn),過點(diǎn)且傾斜角為30°的直線交橢圓于兩點(diǎn).
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點(diǎn)在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個(gè)不重合的動點(diǎn),以為直徑且過點(diǎn)的所有圓中,求面積最小的圓的半徑長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:()經(jīng)過兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足.求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案