6.若f(x)是冪函數(shù),且滿足$\frac{f(9)}{f(3)}$=2,則f($\frac{1}{9}$)=$\frac{1}{4}$.

分析 由待定系數(shù)法求得冪函數(shù)解析式,從而求出f($\frac{1}{9}$)

解答 解:設(shè)f(x)=xα,
由 $\frac{f(9)}{f(3)}$=$\frac{{9}^{α}}{{3}^{α}}$=3α=2,得α=log32,
∴f(x)=xlog32,
∴f($\frac{1}{9}$)=($\frac{1}{9}$)log32=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意冪函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)等差數(shù)列{an}的前n項和為Sn,若S3=3,S6=15,則a10+a11+a12=( 。
A.21B.30C.12D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題P:函數(shù)y=lg(x2+2x+a)的定義域為R;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實(shí)數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合M={x|x2-3x-18≤0},N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M∩N=N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an} 中,a5=3,a6=-2
(1)求數(shù)列{an}的首項a1和公差d;
(2)求數(shù)列{an}的通項公式an 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=f'(1)+xlnx,則f(e)=( 。
A.1+eB.eC.2+eD.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y∈R,則“|x|>|y|”是“x2>y2”的(  )
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.湖心有四座小島,其中任何三座都不在一條直線上.?dāng)M在它們之間修建3座橋,以便從其中任何一座小島出發(fā)皆可通過這三座橋到達(dá)其它小島.則不同的修橋方案有( 。
A.4種B.16種C.20種D.24種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=m-|x-2|,不等式f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|x+6|-t2+t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案