17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)F1,F(xiàn)2是橢圓E的左、右焦點(diǎn),P是橢圓上一點(diǎn),∠F1PF2=$\frac{π}{2}$且△F1PF2的面積為3.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)動(dòng)點(diǎn)M在橢圓E上,動(dòng)點(diǎn)N在直線l:y=2$\sqrt{3}$上,若OM⊥ON,求證:原點(diǎn)O到直線MN的距離是定值.

分析 (Ⅰ)利用橢圓的離心率a=2c,利用勾股定理,三角形的面積公式及橢圓的定義,即可求得a和c的值,則b2=a2-c2,即可求得橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)直線ON斜率不存在時(shí),由d=$\frac{丨OM丨丨ON丨}{丨MN丨}$=$\sqrt{3}$,當(dāng)直線OM斜率存在時(shí),將直線OM的方程代入橢圓方程,求得M點(diǎn)坐標(biāo),則直線ON的斜率-$\frac{1}{k}$,將y=2$\sqrt{3}$,求得N點(diǎn)坐標(biāo),則d2=$\frac{丨OM{丨}^{2}•丨ON{丨}^{2}}{丨MN{丨}^{2}}$=3,原點(diǎn)O到直線MN的距離是定值.

解答 解:(Ⅰ)橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,a=2c,①
△F1PF2的面積為3,則$\frac{1}{2}$丨PF1丨丨PF2丨=3,則丨PF1丨丨PF2丨=6,
由丨PF1丨+丨PF2丨=2a,丨PF12+丨PF22=(2c)2
則a2-c2=3,②
解得:a=2,c=1,
b2=a2-c2=3,
∴橢圓E的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)證明:①當(dāng)直線ON斜率不存在時(shí),即點(diǎn)N在y軸上時(shí),丨ON丨=2$\sqrt{3}$,
丨OM丨=2,丨MN丨=4,
設(shè)原點(diǎn)O到直線MN的距離為d,由比例關(guān)系可得d=$\frac{丨OM丨丨ON丨}{丨MN丨}$=$\sqrt{3}$,
②當(dāng)直線OM斜率存在時(shí),設(shè)直線OM方程為:y=kx,
$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得:x2=$\frac{12}{3+4{k}^{2}}$,y2=$\frac{12{k}^{2}}{3+4{k}^{2}}$,
由OM⊥ON,則直線ON方程為:y=-$\frac{1}{k}$x,代入y=2$\sqrt{3}$,可得x=-2$\sqrt{3}$k,則N(-2$\sqrt{3}$k,2$\sqrt{3}$),
則丨MN丨2=丨ON丨2+丨OM丨2=(-2$\sqrt{3}$k)2+(2$\sqrt{3}$)2+$\frac{12}{3+4{k}^{2}}$+$\frac{12{k}^{2}}{3+4{k}^{2}}$=$\frac{48(1+{k}^{2})^{2}}{3+4{k}^{2}}$,
則由比例關(guān)系可得d=$\frac{丨OM丨丨ON丨}{丨MN丨}$,
d2=$\frac{\frac{12(k+1)^{2}}{3+4{k}^{2}}•12(k+1)^{2}}{\frac{48(1+{k}^{2})^{2}}{3+4{k}^{2}}}$=3,
∴d=$\sqrt{3}$,
綜上所述,原點(diǎn)O到直線MN的距離為定值$\sqrt{3}$.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,直線的斜率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的半焦距為c(c>0),左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線${y^2}=\frac{15}{8}(a+c)x$與橢圓交于M,N兩點(diǎn),若四邊形AMFN是菱形,則橢圓的離心率是( 。
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°.F為PA中點(diǎn),PD=$\sqrt{2}$,AB=AD=$\frac{1}{2}$CD=1. 四邊形PDCE為矩形,線段PC交DE于點(diǎn)N.
(Ⅰ)求證:AC∥平面DEF;
(Ⅱ)求二面角A-BC-P的大;
(Ⅲ)在線段EF上是否存在一點(diǎn)Q,使得BQ與平面BCP所成角的大小為$\frac{π}{6}$?若存在,求出Q點(diǎn)所在的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,五面體PABCD中,CD⊥平面PAD,ABCD為直角梯形,∠BCD=$\frac{π}{2}$,PD=BC=CD=$\frac{1}{2}$AD,AP⊥PD.
(Ⅰ)若E為AP的中點(diǎn),求證:BE∥平面PCD;
(Ⅱ)求二面角P-AB-C的余弦值;
(Ⅲ)若點(diǎn)Q在線段PA上,且BQ與平面ABCD所成角為$\frac{π}{6}$,求CQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{(sin\frac{x}{2}+cos\frac{x}{2})^{2}-1}{co{s}^{2}\frac{x}{2}-si{n}^{2}\frac{x}{2}}$,函數(shù)y=f(x)-$\sqrt{3}$在(0,+∞)上的零點(diǎn)按從小到大的順序構(gòu)成數(shù)列{an}(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{\frac{3}{π}{a}_{n}}{(4{n}^{2}-1)(3n-2)}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線性相關(guān)關(guān)系,現(xiàn)分別用模型①:y=C1x2+C2與模型②:y=e${\;}^{{C}_{3}x+{C}_{4}}$作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個(gè)變量之間的關(guān)系.
溫度x/℃20222426283032
產(chǎn)卵數(shù)y/個(gè)610212464113322
t=x24004845766767849001024
Z=lny1.792.303.043.184.164.735.77
 $\overline{x}$ $\overline{t}$ $\overline{y}$ $\overline{z}$
 26 692 80 3.57
 $\frac{\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}}$ $\frac{\sum_{i=1}^{7}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{7}({t}_{i}-\overline{t})^{2}}$ $\frac{\sum_{i=1}^{7}({z}_{i}-\overline{z})({x}_{i}-\overline{x})}{\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}}$ $\frac{\sum_{i=1}^{7}({z}_{i}-\overline{z})({t}_{i}-\overline{t})}{\sum_{i=1}^{7}({t}_{i}-\overline{t})^{2}}$
 1157.54 0.43 0.32 0.00012
其中ti=xi2,$\overline{t}$=$\sum_{i=1}^{7}{t}_{i}$,zi=lnyi,$\overline{u}$=$\sum_{i=1}^{7}{z}_{i}$,
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=βu+α的斜率和截距的最小二乘估計(jì)分別為:β=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.
(1)分別畫出y關(guān)于t的散點(diǎn)圖、z關(guān)于x的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立y關(guān)于x的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為30℃時(shí)的產(chǎn)卵數(shù).(C1,C2,C3,C4與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(3)若模型①、②的相關(guān)指數(shù)計(jì)算分別為R12=0.82,R22=0.96,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=xlnx-aex(e為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$({0,\frac{1}{e}})$B.(0,e)C.$({\frac{1}{e},e})$D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義[x]表示不超過的最大整數(shù),如[2]=2,[2,2]=2,執(zhí)行如圖所示的程序框圖,則輸出S=(  )
A.1991B.2000C.2007D.2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{1-x}{ax}+lnx$在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)求函數(shù)g(x)=ln(1+x)-x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,證明:$\frac{1}{a+b}≤ln\frac{a+b}<\frac{a}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案