【題目】已知函數(shù).
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.
【答案】(1)增函數(shù),證明見解析;(2).
【解析】
(1)f (x)是增函數(shù),利用單調(diào)性的定義進(jìn)行證明;
(2)用奇函數(shù)的性質(zhì)先求出a,再求函數(shù)f (x)的值域.
(1)f (x)是增函數(shù).
證明如下:函數(shù)f (x)的定義域?yàn)椋ī?/span>∞,+∞),且
任取x1,x2∈(﹣∞,+∞),且x1<x2,
則.
因?yàn)?/span>y=2x在R上單調(diào)遞增,且x1<x2,
所以,,,,
所以f(x2)﹣f(x1)>0,即f(x2)>f(x1),
所以f(x)在(﹣∞,+∞)上是單調(diào)增函數(shù).
(2)因?yàn)?/span>f(x)是定義域上的奇函數(shù),所以f(﹣x)=﹣f(x),
即對任意實(shí)數(shù)x恒成立,化簡得,
所以2a﹣2=0,即a=1.所以,
因?yàn)?x+1>1,所以,可得,則.
故函數(shù)f (x)的值域?yàn)椋ī?/span>1,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,動點(diǎn)M到點(diǎn)F(1,0)的距離與它到直線x=2的距離之比為 .
(1)求動點(diǎn)M的軌跡E的方程;
(2)設(shè)直線y=kx+m(m≠0)與曲線E交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn)(且C,D在A,B之間或同時在A,B之外).問:是否存在定值k,對于滿足條件的任意實(shí)數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出所有滿足的的值;若不是,請說明事由.
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點(diǎn).
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長度;
(Ⅲ)判斷線段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域?yàn)閧x|x≠0}的函數(shù)f(x)滿足:f(xy)=f(x)f(y),f(x)>0且在區(qū)間(0,+∞)上單調(diào)遞增,若m滿足f(log3m)+f( )≤2f(1),則實(shí)數(shù)m的取值范圍是( )
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某商場旅游鞋的日銷售情況,現(xiàn)抽取部分顧客購鞋的尺碼,將所得數(shù)據(jù)繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數(shù)為10.
(1)用頻率估計(jì)概率,求尺碼落在區(qū)間(37.5,43.5]概率約是多少?
(2)從尺碼落在區(qū)間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區(qū)間(43.5,45.5]的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)求證:O、B、D、E四點(diǎn)共圓;
(2)求證:2DE2=DMAC+DMAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(百分制)如表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學(xué)成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系( )
A.99.5%
B.99.9%
C.97.5%
D.95%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com