【題目】定義:對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出所有滿足的的值;若不是,請說明事由.
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
【答案】(1)f(x)為“局部奇函數(shù)”.(2)m∈[﹣,﹣1].(3)1﹣≤m≤2.
【解析】
試題(1)利用局部奇函數(shù)的定義,建立方程關系,然后判斷方程是否有解,有解則是“局部奇函數(shù)”,若無解,則不是;(2)(3)都是利用“局部奇函數(shù)的定義”,建立方程關系,并將方程有解的問題轉化成二次方程根的分布問題,從而求出各小問參數(shù)的取值范圍.
試題解析:(1)當,方程即,有解
所以為“局部奇函數(shù)”
(2)法一:當時,可化為
因為的定義域為,所以方程在上有解
令,則,設,則在上為減函數(shù),在上為增函數(shù),所以當時,,所以,即;
法二:當時,可化為
因為的定義域為,所以方程即在上有解
令,則關于的二次方程在上有解即可保證為“局部奇函數(shù)”
設,當方程在上只有一解時,須滿足或,解之得(舍去,因為此時方程在區(qū)間有兩解,不符合這種情況)或;
當方程在上兩個不等的實根時,須滿足
,綜上可知;
(3)當為定義域上的“局部奇函數(shù)”時
,可化為,
令則,
從而在有解,即可保證為“局部奇函數(shù)”
令,則
①當時,在有解,即,解得
②當時,在有解等價于
解得;綜上可知.
科目:高中數(shù)學 來源: 題型:
【題目】已知某臺風中心位于海港城市東偏北的150公里外,以每小時公里的速度向正西方向快速移動,2.5小時后到達距海港城市西偏北的200公里處,若,則風速的值為_____公里/小時
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①直線l的方向向量為=(1,﹣1,2),直線m的方向向量=(2,1,﹣),則l與m垂直;
②直線l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為=(0,1,3),=(1,0,2),則α∥β;
④平面α經(jīng)過三點A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是______.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)的直線交橢圓C于A,B兩點,求△AOB(O為原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對任意且≠0,不等式恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)的圖象在點處的切線的傾斜角為45°,對于任意的,函數(shù)在區(qū)間上總不是單調函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)試判斷f (x)的單調性,并證明你的結論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)試討論函數(shù)的單調性及最值;
(2)若函數(shù)不存在零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com