【題目】如圖,在直三棱柱ABCA1B1C1中,∠ABC=,D是棱AC的中點(diǎn),且AB=BC=BB1=2.
(1)求證:AB1∥平面BC1D;
(2)求異面直線AB1與BC1的夾角.
【答案】(1)見(jiàn)解析(2)
【解析】
連接交于點(diǎn),連接在三角形中由中位線得,繼而證明線面平行
(2) 建立空間直角坐標(biāo)系,運(yùn)用空間向量求出向量夾角的余弦值,從而得到夾角
(1)證明:如圖,連接B1C交BC1于點(diǎn)O,連接OD.
∵O為B1C的中點(diǎn),D為AC的中點(diǎn),∴OD∥AB1.
∵AB1平面BC1D,OD平面BC1D,
∴AB1∥平面BC1D.
(2)解:建立如圖所示的空間直角坐標(biāo)系Bxyz.
則B(0,0,0),A(0,2,0),C1(2,0,2),B1(0,0,2).
∴=(0,-2,2),=(2,0,2).
設(shè)異面直線AB1與BC1的夾角為θ,則.
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于集合,定義函數(shù)對(duì)于兩個(gè)集合,定義集合. 已知, .
(Ⅰ)寫(xiě)出和的值,并用列舉法寫(xiě)出集合;
(Ⅱ)用表示有限集合所含元素的個(gè)數(shù),求的最小值;
(Ⅲ)有多少個(gè)集合對(duì),滿足,且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),為正項(xiàng)數(shù)列的前n項(xiàng)和,且.數(shù)列滿足:,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2-x+16a)的定義域?yàn)?/span>R;命題q:不等式3x-9x<a對(duì)任意x∈R恒成立.
(1)如果p是真命題,求實(shí)數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),及圓.
(1)求過(guò)點(diǎn)的圓的切線方程;
(2)若過(guò)點(diǎn)的直線與圓相交,截得的弦長(zhǎng)為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次考試中,5名同學(xué)的數(shù)學(xué)、物理成績(jī)?nèi)绫硭荆?/span>
學(xué)生 | |||||
數(shù)學(xué)分 | 89 | 91 | 93 | 95 | 97 |
物理分 | 87 | 89 | 89 | 92 | 93 |
請(qǐng)?jiān)趫D中的直角坐標(biāo)系中作出這些數(shù)據(jù)的散點(diǎn)圖,并求出這些數(shù)據(jù)的回歸方程;
要從4名數(shù)學(xué)成績(jī)?cè)?/span>90分以上的同學(xué)中選2名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)的物理成績(jī)高于90分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
參考公式:線性回歸方程;,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列直線l與x軸正半軸和y軸分別交于點(diǎn)Q、P,與橢圓分別交于點(diǎn)M、N,各點(diǎn)均不重合且滿足.
求橢圓的標(biāo)準(zhǔn)方程;
若,試證明:直線l過(guò)定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形中,,點(diǎn)是的中點(diǎn),將沿折起到的位置,使二面角是直二面角.
(1)證明: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線⊥平面垂足為在矩形ABCD中,AD=1,AB=2,若點(diǎn)A在上移動(dòng),點(diǎn)B在平面上移動(dòng),則D兩點(diǎn)間的最大距離為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com