精英家教網 > 高中數學 > 題目詳情
20.已知f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若m、n∈[-1,1],m+n≠0時$\frac{f(m)+f(n)}{m+n}$>0.
(1)用定義證明f(x)在[-1,1]上是增函數;
(2)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數t的取值范圍.

分析 (1)根據函數單調性的定義證明即可;
(2)問題轉化為x∈[-1,1],a∈[-1,1],t2-2at+1≥1恒成立,根據函數的單調性求出t的范圍即可.

解答 (1)證明:任取x1<x2,且x1,x2∈[-1,1],
則f(x1)-f(x2)=f(x1)+f(-x2)=$\frac{{f({x_1})+f(-{x_2})}}{{{x_1}-{x_2}}}$•(x1-x2),
∵-1≤x1<x2≤1,∴x1+(-x2)≠0,
由已知$\frac{{f({x_1})+f(-{x_2})}}{{{x_1}-{x_2}}}$>0,又 x1-x2<0,
∴f(x1)-f(x2)<0,即f(x)在[-1,1]上為增函數;
(2)由(1)可知f(x)在[-1,1]上為增函數,且f(1)=1,
故對x∈[-1,1],恒有f(x)≤1,
所以要使f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,
即要t2-2at+1≥1成立,
故t2-2at≥0,記g(a)=t2-2at,對a∈[-1,1],有g(a)≥0,
只需g(a)在[-1,1]上的最小值大于等于0,g(-1)≥0,g(1)≥0,
解得,t≤-2或t=0或t≥2,
∴t的取值范圍是:{t|t≤-2或t=0或t≥2}.

點評 本題考查了函數的單調性、函數恒成立問題,考查導數的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

11.點P(a,b)在直線x+y+1=0上,則$\sqrt{{a^2}+{b^2}-2a-2b+2}$的最小值$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.雙曲線C和橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1有相同的焦點,它的一條漸近線為y=$\sqrt{2}$x,求雙曲線C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.求經過點A(-2,3),且在x軸上的截距等于在y軸上截距的2倍的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$與$\overrightarrow a+3\overrightarrow b$平行,則k=( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中數學 來源:2017屆河北滄州市高三9月聯(lián)考數學(理)試卷(解析版) 題型:解答題

中秋節(jié)吃月餅是我國的傳統(tǒng)習俗,設一盤中盛有7塊月餅,其中五仁月餅2塊,蓮蓉月餅3塊,豆沙月餅2塊,這三種月餅的形狀大小完全相同,從中任取3塊.

(Ⅰ)求這三種月餅各取到1塊的概率;

(Ⅱ)設表示取到的豆沙月餅的個數,求的分布列,數學期望與方差.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若函數y=sin(2x+$\frac{π}{3}$)的圖象上所有的點的橫坐標擴大到原來的2倍,縱坐標不變,則得到的圖象所對應的函數解析式為( 。
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x+$\frac{π}{3}$)C.y=sin(4x+$\frac{2π}{3}$)D.y=sin(4x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知an=log(n+1)(n+2)(n∈N*).我們把使乘積a1•a2•a3•…•an為整數的數n叫做“完美數”,則在區(qū)間(1,2016)內的所有完美數的和為( 。
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.設全集U=R,M={x|-3<x<2},N={x|x<-4或x>1},則(∁UM)∩N等于( 。
A.M∪NB.U(M∪N)C.{x|x<-4或x≥2}D.{x|x<-3或x>1}

查看答案和解析>>

同步練習冊答案