【題目】已知函數(shù)
(1)求函數(shù) 的值域;
(2)若 時(shí),函數(shù) 的最小值為-7,求a的值和函數(shù) 的最大值。
【答案】
(1)解:設(shè)
在 上是減函數(shù)
, 所以值域?yàn)?
(2)解:①當(dāng) 時(shí), 由
所以 在 上是減函數(shù),
或a=-4(不合題意舍去)
當(dāng) 時(shí)y有最大值,
即
②當(dāng) 時(shí), , 在上 是減函數(shù),
, 或 (不合題意舍去)
或 (舍去)
當(dāng) 時(shí)y有最大值,即
綜上, 或 ,當(dāng) 時(shí)f(x)的最大值為 ;
當(dāng) 時(shí)f(x)的最大值為
【解析】(1)利用換元法,求出函數(shù)的值域,注意t的范圍。
(2)利用換元法,得到函數(shù),對a分情況討論,根據(jù)二次函數(shù)在閉區(qū)間上的單調(diào)性,利用函數(shù)的最小值,列出關(guān)于a的方程,解出a的值,求得函數(shù)的最大值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+ 與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣cos2x+1,下列結(jié)論中錯(cuò)誤的是( )
A.f(x)的圖象關(guān)于( ,1)中心對稱
B.f(x)在( , )上單調(diào)遞減
C.f(x)的圖象關(guān)于x= 對稱
D.f(x)的最大值為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x的定義域?yàn)镽,滿足f(a+2)=18,函數(shù)g(x)=λ3ax﹣4x的定義域?yàn)閇0,1].
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)為定義域上單調(diào)減函數(shù),求實(shí)數(shù)λ的取值范圍;
(3)λ為何值時(shí),函數(shù)g(x)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在這個(gè)正方體中,
① 與 平行;
② 與 是異面直線;
③ 與 是異面直線;
④ 與 是異面直線;
以上四個(gè)命題中,正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4sinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y焦點(diǎn)為F,點(diǎn)A,B,C為該拋物線上不同的三點(diǎn),且滿足 + + = .
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點(diǎn)D(0,b),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今信息時(shí)代,眾多高中生也配上了手機(jī).某校為研究經(jīng)常使用手機(jī)是否對學(xué)習(xí)成績有影響,隨機(jī)抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,并制成下面的2×2列聯(lián)表:
及格 | 不及格 | 合計(jì) | |
很少使用手機(jī) | 20 | 6 | 26 |
經(jīng)常使用手機(jī) | 10 | 14 | 24 |
合計(jì) | 30 | 20 | 50 |
(1)判斷是否有97.5%的把握認(rèn)為經(jīng)常使用手機(jī)對學(xué)習(xí)成績有影響?
(2)從這50人中,選取一名很少使用手機(jī)的同學(xué)記為甲和一名經(jīng)常使用手機(jī)的同學(xué)記為乙,解一道數(shù)學(xué)題,甲、乙獨(dú)立解出此題的概率分別為P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“學(xué)習(xí)師徒”,記X為兩人中解出此題的人數(shù),若X的數(shù)學(xué)期望E(X)=1.4,問兩人是否適合結(jié)為“學(xué)習(xí)師徒”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.
P(K2≥K0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點(diǎn),
(1)求證:MN∥平面PAD;
(2)求點(diǎn)B到平面AMN的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com