分析 利用兩個向量垂直的性質(zhì)、兩個向量的數(shù)量積的定義,求得$\overrightarrow{a}$與$\overrightarrow$的夾角θ 的值.
解答 解:∵非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$+$\overrightarrow$),設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則$\overrightarrow{a}$•(2$\overrightarrow{a}$+$\overrightarrow$)=2${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow$=2${|\overrightarrow{a}|}^{2}$+|$\overrightarrow{a}$|•4|$\overrightarrow{a}$|•cosθ=0,∴cosθ=-$\frac{1}{2}$,∴θ=$\frac{2}{3}π$,
故答案為:$\frac{2π}{3}$.
點評 本題主要考查兩個向量的數(shù)量積的定義,兩個向量垂直的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{3}{2})$ | B. | $(0,\frac{{3\sqrt{3}}}{2})$ | C. | $(0,\frac{{\sqrt{3}}}{2})$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-1)2+(y-1)2=1 | B. | (x+1)2+(y+1)2=1 | C. | (x+1)2+(y+1)2=2 | D. | (x-1)2+(y-1)2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com