14.已知tanα=3,則$\frac{2sinα-cosα}{sinα+3cosα}$=$\frac{5}{6}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式化簡所求即可計算得解.

解答 解:∵tanα=3,
∴$\frac{2sinα-cosα}{sinα+3cosα}$=$\frac{2tanα-1}{tanα+3}$=$\frac{2×3-1}{3+3}$=$\frac{5}{6}$.
故答案為:$\frac{5}{6}$.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個不同點.
(1)求橢圓的標準方程以及m的取值范圍;
(2)求證直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知在($\frac{x}{2}$$-\frac{1}{\root{5}{x}}$)n的展開式中,第6項為常數(shù)項,則n=( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≥0}\\{x+5,x<0}\end{array}\right.$.
(1)求f(f(-2))的值;
(2)解不等式f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F(xiàn)為線段EA上的點,且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)={log_a}x-3{log_a}2,\;a∈\{\frac{1}{5},\frac{1}{4},2,4,5,8,9\}$,則f(3a+2)>f(2a)>0的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知i為虛數(shù)單位,復(fù)數(shù)z1=1-i,z2=1+ai,若z1•z2是純虛數(shù),則實數(shù)a的值為( 。
A.1B.-1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(2cosωx+sinωx,cosωx),x∈R,ω>0,記$f(x)=\overrightarrow a•\overrightarrow b$,且該函數(shù)的最小正周期是$\frac{π}{4}$.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有兩個元素的子集,且滿足下列三個條件:①若a1∈A,則a2∈A;②若a3∉A,則a2∉A;③若a3∈A,則a4∉A,則集合A={a2,a3}.

查看答案和解析>>

同步練習(xí)冊答案