【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進(jìn)機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定的最小值;
(Ⅲ)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
【答案】(Ⅰ)見解析(Ⅱ)19(Ⅲ)
【解析】試題分析:(Ⅰ)由已知得X的可能取值為16,17,18,19,20,21,22,分別求出相應(yīng)的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能確定滿足P(X≤n)≥0.5中n的最小值.(Ⅲ)由X的分布列得P(X≤19)=.求出買19個所需費用期望EX1和買20個所需費用期望EX2,由此能求出買19個更合適
試題解析:(Ⅰ)由柱狀圖并以頻率代替概率可得,一臺機器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2,從而
;
;
;
;
;
;
.
所以的分布列為
16 | 17 | 18 | 19 | 20 | 21 | 22 | |
(Ⅱ)由(Ⅰ)知,,故的最小值為19.
(Ⅲ)記表示2臺機器在購買易損零件上所需的費用(單位:元).
當(dāng)時,
.
當(dāng)時,
.
可知當(dāng)時所需費用的期望值小于時所需費用的期望值,故應(yīng)選.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列五個命題: ①函數(shù)y=4cos2x,x∈[﹣10π,10π]不是周期函數(shù);
②已知定義域為R的奇函數(shù)f(x),滿足f(x+3)=f(x),當(dāng)x∈(0, )時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9;
③為了得到函數(shù)y=﹣cos2x的圖象,可以將函數(shù)y=sin(2x﹣ )的圖象向左平移 ;
④已知函數(shù)f(x)=x﹣sinx,若x1 , x2∈[﹣ , ]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設(shè)曲線f(x)=acosx+bsinx的一條對稱軸為x= ,則點( ,0)為曲線y=f( ﹣x)的一個對稱中心.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3+2x2+3x(x∈R)的圖象為曲線C,問:是否存在一條直線與曲線C同時切于兩點?若存在,求出符合條件的所在直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知bcosC+ccosB=2acosA.
(1)求角A的大;
(2)若 = ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)寫出它的振幅、周期、初相;
(2)用“五點法”作出它在一個周期內(nèi)的圖象;
(3)說明的圖象可由的圖象經(jīng)過怎樣的變換而得到。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市小區(qū)有一個矩形休閑廣場,AB=20米,廣場的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場休閑放松,現(xiàn)決定在廣場上安置兩排休閑椅,其中一排是穿越廣場的雙人靠背直排椅MN(寬度不計),點M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計)擺放.已知雙人靠背直排椅的造價每米為2a元,單人弧形椅的造價每米為a元,記銳角∠NBE=θ,總造價為W元.
(1)試將W表示為θ的函數(shù)W(θ),并寫出cosθ的取值范圍;
(2)如何選取點M的位置,能使總造價W最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個盒子中裝有相同大小的紅球和白球若干,從甲盒中取出一個紅球的概率為P,從乙盒中取出一個球為紅球的概率為,而甲盒中球的總數(shù)是乙盒中的總數(shù)的2倍。若將兩盒中的球混合后,取出一個球為紅球的概率為,則P的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com