19.在△ABC中,已知$a=3\sqrt{3}$,b=4,A=30°,則sinB=$\frac{{2\sqrt{3}}}{9}$.

分析 由已知利用正弦定理即可計算得解.

解答 解:∵$a=3\sqrt{3}$,b=4,A=30°,
∴由正弦定理可得:sinB=$\frac{b•sinA}{a}$=$\frac{4×\frac{1}{2}}{3\sqrt{3}}$=$\frac{{2\sqrt{3}}}{9}$.
故答案為:$\frac{{2\sqrt{3}}}{9}$.

點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,∠A=60°,b=1,S△ABC=$\sqrt{3}$,則$\frac{a-2b+c}{sinA-2sinB+sinC}$的值等于( 。
A.$\frac{{2\sqrt{39}}}{3}$B.$\frac{26}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知對任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x<0時,導(dǎo)函數(shù)分別滿足f′(x)>0,g′(x)<0,則x>0時,成立的是( 。
A.f′(x)>0,g′(x)<0B.f′(x)>0,g′(x)>0C.f′(x)<0,g′(x)<0D.f′(x)<0,g′(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知a1=1,a2=-$\frac{1}{1+{a}_{1}}$,a3=-$\frac{1}{1+{a}_{2}}$,…,an+1=-$\frac{1}{1+{a}_{n}}$,….那么a2017=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C經(jīng)過A(3,3),B(2,4)兩點,且圓心C在直線y=3x-5上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P(-m,0),Q(m,0)(m>0),若圓C上存在點M,使得點M也在以PQ為直徑的圓上,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.隨著我國經(jīng)濟的發(fā)展,居民的儲蓄款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份20102011201220132014
時間代號t12345
儲蓄存款y(千億元)567810
(1)取y關(guān)于t的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+a;
(2)用所求回歸方程預(yù)測該地區(qū)2015年(t=6)的人民幣儲蓄存款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的導(dǎo)數(shù):
(1)y=(x+1)2(x-1); 
(2)y=x2sin x; 
(3)y=$\frac{{e}^{x}+1}{{e}^{x}-1}$
(4)f(x)=$\frac{{e}^{x}}{x-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別是棱BC,CC1的中點,P是側(cè)面BCC1B1內(nèi)一點,若A1P∥平面AEF,則線段AP長度的取值范圍是[$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{5}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),α,β∈(0.π)且$\overrightarrow{a}$⊥$\overrightarrow$,求α-β的值.

查看答案和解析>>

同步練習(xí)冊答案