直線l:y=x-1被圓(x-3)2+y2=4截得的弦長為     

試題分析:根據(jù)圓半徑、圓半弦長及圓心到直線距離構成一個直角三角形得:弦長為其中,所以弦長為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

直線l1:x+y+8=0,直線l2經(jīng)過點C(1,2),D(-2,a+2).
(1)若l1l2,求a的值;
(2)若l1⊥l2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線2x+y-8=0和直線x-2y+1=0的交點為P,分別求滿足下列條件的直線方程.
(Ⅰ)直線m過點P且到點A(-2,-1)和點B(2,1)距離相等;
(Ⅱ)直線n過點P且在兩坐標軸上的截距之和為12.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,若圓的圓心在第一象限,圓軸相交于、兩點,且與直線相切,則圓的標準方程為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為圓的兩條互相垂直的弦,且垂足為,則四邊形面積的最大值為(   )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓和點
(1)過點M向圓O引切線,求切線的方程;
(2)求以點M為圓心,且被直線截得的弦長為8的圓M的方程;
(3)設P為(2)中圓M上任意一點,過點P向圓O引切線,切點為Q,試探究:平面內(nèi)是否存在一定點R,使得為定值?若存在,請求出定點R的坐標,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與圓的位置關系是( 。
A.相離B.相交C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓C:x2+(y-3)2=4,過A(-1,0)的直線l與圓C相交于P,Q兩點,若|PQ|=2,則直線l的方程為(  )
A.x=-1或4x+3y-4=0
B.x=-1或4x-3y+4=0
C.x=1或4x-3y+4=0
D.x=1或4x+3y-4=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在圓上任取一點,過點軸的垂線段為垂足.設為線段的中點.
(1)當點在圓上運動時,求點的軌跡的方程;
(2)若圓在點處的切線與軸交于點,試判斷直線與軌跡的位置關系.

查看答案和解析>>

同步練習冊答案