10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足3asinC=4ccosA,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(Ⅰ)求△ABC的面積S;
(Ⅱ)若c=1,求a的值.

分析 (I)由3asinC=4ccosA,利用正弦定理可得3sinAsinC=4sinCcosA,sinC≠0,可得tanA,sinA,cosA.由$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,可得bccosA=3,解得bc.即可得出S=$\frac{1}{2}$bcsinA.
(II)利用(I)及其余弦定理即可得出.

解答 解:(I)∵3asinC=4ccosA,∴3sinAsinC=4sinCcosA,sinC≠0,
∴tanA=$\frac{4}{3}$,可得sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$.
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,∴bccosA=3,∴bc=5.
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×5×\frac{4}{5}$=2.
(II)由(I)可得:b=5.
∴a2=1+52-2×5×1×$\frac{3}{5}$=20,
解得a=2$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、同角三角函數(shù)基本關(guān)系式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線f(x)=xlnx+x在點(diǎn)x=2處的切線方程為(2+ln2)x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)a,b∈R,且a≠1,若奇函數(shù)f(x)=lg$\frac{1+ax}{1+x}$在區(qū)間(-b,b)上有定義.
(1)求a的值;
(2)求b的取值范圍.
(3)求解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,a,b,c分別為∠A、∠B、∠C的對(duì)邊,若a,b,c成等差數(shù)列,∠B=30°,△ABC的面積為$\frac{3}{2}$,則b2=(  )
A.$1+\sqrt{3}$B.$2+\sqrt{3}$C.$12+6\sqrt{3}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面直角坐標(biāo)系xOy 中,已知點(diǎn)A(2,-1)和坐標(biāo)滿足$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$的動(dòng)點(diǎn)M(x,y),則目標(biāo)函數(shù)z=$\overrightarrow{OA}•\overrightarrow{OM}$的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,圓(x-2)2+(y+1)2=1被直線x+2y-1=0截得的弦長(zhǎng)為$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,寫出集合A={a,b}的不同分拆.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x||x|<3},B={-1,0,1,2,3,4},則A∩B=( 。
A.{0,1,2}B.{0,1,2,3}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)二次函數(shù)f(x)=ax2-2x+c(x∈R)的值域?yàn)閇0,+∞),則$\frac{1}{c+1}$+$\frac{4}{a+4}$的最大值為( 。
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案