3.已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,且當x∈(-∞,0)時,f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=0.76f(0.76),b=log${\;}_{\frac{10}{7}}$6f(log${\;}_{\frac{10}{7}}$6),c=60.6f(60.6),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,判斷函數(shù)的奇偶性,然后求解a,b,c的大小.

解答 解:定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,可知函數(shù)是偶函數(shù),xf(x)是減函數(shù),
當x∈(-∞,0)時,f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),可知函數(shù)y=xf(x)在x∈(-∞,0)時是減函數(shù),x>0時xf(x)是減函數(shù);
0.76∈(0,1),60.6$<{9}^{\frac{1}{2}}∈$(2,4),log${\;}_{\frac{10}{7}}$6≈log1.56∈(4,6).
所以a>c>b.
故選:D.

點評 本題考查函數(shù)的單調(diào)性以及函數(shù)的奇偶性的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求點M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知F1,F(xiàn)2是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左,右焦點,點P在雙曲線上且不與頂點重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若$|{OA}|=\frac{2}$,則該雙曲線的離心率為( 。
A.$\sqrt{5}$B.1+$\sqrt{2}$C.2$\sqrt{5}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知A={x|1≤x≤3},B={x|x>2},全集U=R.
(1)求A∩B和A∪(∁UB); 
(2)已知非空集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m=( 。
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在△ABC中,AB=2,$\frac{3}{2}$cos2B+5cosB-$\frac{1}{2}$=0,且點D在線段BC上.
(1)若∠ADC=$\frac{3π}{4}$,求AD的長;
(2)若BD=2DC,$\frac{sin∠BAD}{sin∠CAD}$=4$\sqrt{2}$,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.正方體的邊長為2,且它的8個頂點都在同一個球面 上,則這個球的表面積為(  )
A.12πB.-125πC.0D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求值域:
(1)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈[-$\frac{π}{8}$,$\frac{π}{2}$];
(2)y=-3sin2x-4cosx+4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f($\frac{ωx+φ}{2}$+$\frac{π}{12}$),其中常數(shù)ω>0,|φ|<$\frac{π}{2}$.
(i)當ω=4,φ=$\frac{π}{6}$時,函數(shù)y=g(x)-4λf(x)在[$\frac{π}{12}$,$\frac{π}{3}$]上的最大值為$\frac{3}{2}$,求λ的值;
(ii)若函數(shù)g(x)的一個單調(diào)減區(qū)間內(nèi)有一個零點-$\frac{2π}{3}$,且其圖象過點A($\frac{7π}{3}$,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時函數(shù)g(x)的解析式.

查看答案和解析>>

同步練習冊答案