分析 由$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$=($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)($\frac{4a}{3}$+3b+$\frac{c}{3}$),展開后,利用基本不等式即可求出答案
解答 解:由4a+9b+c=3,∴$\frac{4a}{3}$+3b+$\frac{c}{3}$=1,
∴$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$=($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)($\frac{4a}{3}$+3b+$\frac{c}{3}$),
=$\frac{4}{3}$+$\frac{3b}{a}$+$\frac{c}{3a}$+3+$\frac{4a}{3b}$+$\frac{c}{3b}$+$\frac{1}{3}$+$\frac{4a}{3c}$+$\frac{3b}{c}$
=3+$\frac{5}{3}$+($\frac{3b}{a}$+$\frac{4a}{3b}$)+($\frac{c}{3a}$+$\frac{4a}{3c}$)+($\frac{c}{3b}$+$\frac{3b}{c}$)≥3+$\frac{5}{3}$+4+$\frac{4}{3}$+2=12.
當(dāng)且僅當(dāng)a=$\frac{1}{4}$,b=$\frac{1}{6}$,c=$\frac{1}{2}$取等號,
故$\frac{1}{a}+\frac{1}+\frac{1}{c}$的最小值是12.
故答案為:12
點評 本題考查了基本不等式的性質(zhì),考查了變形的能力,考查了推理能力和計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com