關(guān)于x的函數(shù)在[0,1]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是_________.
(1,2);
因?yàn)閤的函數(shù)在[0,1]上單調(diào)遞減,,則底數(shù)a>1,同時(shí)2-a>0,a<2,可知實(shí)數(shù)a的取值范圍是(1,2)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),求函數(shù)的定義域,并討論它的奇偶性、單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x)是定義在R上的增函數(shù),則f(x)=0的根( )
A.有且只有一個(gè)B.有2個(gè)C.至多有一個(gè)D.以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:
①偶函數(shù)的圖像一定與軸相交;  ②定義在上的奇函數(shù)必滿足;
既不是奇函數(shù)又不是偶函數(shù);
,則的映射;
上是減函數(shù).
其中真命題的序號是(把你認(rèn)為正確的命題的序號都填上)       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于函數(shù),若存在實(shí)數(shù),使成立,則稱的不動(dòng)點(diǎn).
⑴當(dāng)時(shí),求的不動(dòng)點(diǎn);
⑵若對于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
⑶在⑵的條件下,若的圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段AB的垂直平分線,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若當(dāng)時(shí),的最小值為-1,求實(shí)數(shù)k的值;
(Ⅱ)若對任意的,均存在以為三邊邊長的三角形,求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)在直角坐標(biāo)系中,畫出函數(shù)大致圖像.
(2)關(guān)于的不等式的解集一切實(shí)數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知向量="(1,2)," =(-2,1),k,t為正實(shí)數(shù),向量 = +(t+1), =-k+
(1)若,求k的最小值;
(2)是否存在正實(shí)數(shù)k、t,使?  若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題滿分14分)
已知.
(1)判斷并證明的奇偶性;
(2)判斷并證明的單調(diào)性;
(3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案