【題目】已知拋物線,過點的直線與交于不同的兩點,且滿足,以為中點的線段的兩端點分別為,其中在軸上,在上,則_______,的最小值為____________
【答案】2
【解析】
由題可知,過點的直線的方程設(shè)為,代入拋物線的方程,運用韋達定理,結(jié)合條件,解方程可得的值;設(shè),,,根據(jù)中點坐標公式求出,
再設(shè)直線的方程為,聯(lián)立拋物線方程,運用韋達定理,可求得,再由弦長公式和二次函數(shù)的最值求法,可得所求最小值.
解:已知過點的直線與交于不同的兩點,
則過點的直線的方程設(shè)為,
代入拋物線方程,可得,
所以,,可得;
由為的中點,且在軸上,設(shè),,,
則,可得,
設(shè)直線的方程為,聯(lián)立拋物線方程,
可得,
所以,,
因為,則有,可得,
則
,
當即軸時,取得最小值.
故答案為:2,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點M、E分別是PA、PD的中點
(1)求證:CE//平面BMD
(2)點Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時,函數(shù)有最小值,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一種新的驗血技術(shù)可以提高血液檢測效率.現(xiàn)某專業(yè)檢測機構(gòu)提取了份血液樣本,其中只有1份呈陽性,并設(shè)計了如下混合檢測方案:先隨機對其中份血液樣本分別取樣,然后再混合在一起進行檢測,若檢測結(jié)果為陰性,則對另外3份血液逐一檢測,直到確定呈陽性的血液為止;若檢測結(jié)果呈陽性,測對這份血液再逐一檢測,直到確定呈陽性的血液為止.
(1)若,求恰好經(jīng)過3次檢測而確定呈陽性的血液的事件概率;
(2)若,宜采用以上方案檢測而確定呈陽性的血液所需次數(shù)為,
①求的概率分布;
②求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟合作關(guān)系,共同打造政治互信、經(jīng)濟融合、文化包容的命運共同體.自2013年以來,“一帶一路”建設(shè)成果顯著下圖是2013-2017年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述正確的是( ).
A.這五年,2013年出口額最少
B.這五年,出口總額比進口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進口增速最快
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:若向量列,滿足條件:從第二項開始,每一項與它的前一項的差都等于同一個常向量(即坐標都是常數(shù)的向量),即(,且,為常向量),則稱這個向量列為等差向量列,這個常向量叫做等差向量列的公差,且向量列的前項和為.已知等差向量列滿足,則向量列的前項和( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com