Processing math: 100%
2.下列說法正確的有①②③④
①四邊形ABCD平面內(nèi)有一點O,若OA+OC=OB+OD,則四邊形ABCD為平行四邊形
②△ABC中,若A>B則sinA>sinB,反之亦成立
③函數(shù)y=12x22x的值域為(0,1]
④方程2x+1=x+m有兩個不同解,則m[121

分析 ①根據(jù)向量相等的性質(zhì)進行判斷,
②根據(jù)大角對大邊以及正弦定理進行判斷,
③根據(jù)復合函數(shù)以及指數(shù)函數(shù)的性質(zhì)進行求解,
④利用參數(shù)分離法結(jié)合函數(shù)的導數(shù)與最值之間的關系進行判斷求解.

解答 解:①四邊形ABCD平面內(nèi)有一點O,若OA+OC=OB+OD,
OA-OB=OD-OC,即BA=CD,則四邊形ABCD為平行四邊形,正確,
②△ABC中,若A>B,則a>b,由正弦定理得sinA>sinB成立,反之亦成立故②正確,
③由x2-2x≥0得x≥2或x≤0,設t=x22x,則t=x121≥0,
則函數(shù)y=12x22x∈(0,1],即函數(shù)的值域為(0,1],故③正確,
④由2x+1≥0得x≥12,由2x+1=x+m得m=2x+1-x,
設f(x)=2x+1-x,x≥12
則函數(shù)的導數(shù)f′(x)=222x+1-1=12x+12x+1,
由f′(x)=0得1-2x+1=0得2x+1=1,即2x+1=1,得x=0,
當x>0時,f′(x)<0此時函數(shù)為減函數(shù),且當x→+∞時,f(x)→-∞,
12≤x<0時,f′(x)>0,此時函數(shù)為增函數(shù),
即x=0時,函數(shù)取得極大值同時也是最大值f(0)=1,
∵f(12)=0-(12)=12
∴要使f(x)=m有兩個不同解,則m[121.故④正確,
故答案為:①②③④

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強有一定的難度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知p:函數(shù)y=x2+mx+1在(-∞,-1)上單調(diào)遞減,q:函數(shù)y=4x2+4(m-2)x+1圖象與x軸有公共點.若p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的n的值為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)fx={fx2+1x02x+22x0,則f(2014)=1007.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知fx=x33x,gx=mx+13,若對任意的x1∈[-1,2],總存在x2∈[-1,2],使得g(x1)=f(x2),則實數(shù)m的取值范圍是[1316]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.”a>-2”是函數(shù)f(x)=|x-a|在(-∞,1]上單調(diào)遞減的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)求復數(shù)z=1+cosα+isinα(π<α<2π)的模.
(2)如(m+n)-(m2-3m)i>-1,試求自然數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ax3+3x2+1若f(x)存在唯一的零點x0,且x0>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設n=π20(4sinx+conx)dx,則n=( �。�
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案