【題目】已知函數(shù)是偶函數(shù).
(1)求實數(shù)的值;
(2)當時,函數(shù)存在零點,求實數(shù)的取值范圍;
(3)設(shè)函數(shù),若函數(shù)與的圖像只有一個公共點,求實數(shù)的取值范圍.
【答案】(1)1;(2);(3)
【解析】
(1)函數(shù)是偶函數(shù), 所以得出值檢驗即可;(2)因為時,存在零點,即關(guān)于的方程有解,求出的值域即可;(3)因為函數(shù)與的圖像只有一個公共點,所以關(guān)于的方程有且只有一個解,所以,換元,研究二次函數(shù)圖象及性質(zhì)即可得出實數(shù)的取值范圍.
(1)因為是上的偶函數(shù),
所以,即
解得,經(jīng)檢驗:當時,滿足題意.
(2)因為,所以
因為時,存在零點,
即關(guān)于的方程有解,
令,則
因為,所以,所以,
所以,實數(shù)的取值范圍是.
(3)因為函數(shù)與的圖像只有一個公共點,
所以關(guān)于的方程有且只有一個解,
所以
令,得 (*),記,
①當時,方程(*)的解為,不滿足題意,舍去;
②當時,函數(shù)圖像開口向上,又因為圖像恒過點,方程(*)有一正一負兩實根,所以符合題意;
③當時,且時,解得,
方程(*)有兩個相等的正實根,所以滿足題意.
綜上,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+6|﹣|m﹣x|(m∈R)
(1)當m=3時,求不等式f(x)≥5的解集;
(2)若不等式f(x)≤7對任意實數(shù)x恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校“統(tǒng)計”課程的教師隨機調(diào)查了選該課的一些學生的情況,具體數(shù)據(jù)如下表,為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān),計算得到,因為,所以判定主修統(tǒng)計專業(yè)與性別是有關(guān)系的,那么這種判斷出錯的可能性為________.
專業(yè) 性別 | 非統(tǒng)計專業(yè) | 統(tǒng)計專業(yè) |
男 | 13 | 10 |
女 | 7 | 20 |
本題可以參考獨立性檢驗臨界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的首項,前n項和滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列是公比為4的等比數(shù)列,且,,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實數(shù)的取值范圍;
(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的最大值是,求的值;
(2)已知,若存在兩個不同的正數(shù),當函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】安慶市某中學教研室從高二年級隨機抽取了名學生的十月份語文成績(滿分分,成績均為不低于分的整數(shù)),得到如圖所示的頻率分布直方圖.
(1)若該校高二年級共有學生人,試估計十月份月考語文成績不低于分的人數(shù);
(2)為提高學生學習語文的興趣,學校決定在隨機抽取的名學生中成立“二幫一”小組,即從成績中選兩位同學,共同幫助中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,角以為始邊,終邊與單位圓相交于點.過點的圓的切線交軸于點,點的橫坐標關(guān)于角的函數(shù)記為. 則下列關(guān)于函數(shù)的說法正確的( )
A. 的定義域是
B. 的圖象的對稱中心是
C. 的單調(diào)遞增區(qū)間是
D. 對定義域內(nèi)的均滿足
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com