A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
分析 根據(jù)平面向量的數(shù)量積與模長(zhǎng)公式,列出方程求出$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.
解答 解:∵2|$\overrightarrow{a}$|=3|$\overrightarrow$|,|$\overrightarrow{a}$-2$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,
∴${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow$+4${\overrightarrow}^{2}$=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,
∴2$\overrightarrow{a}$•$\overrightarrow$=${\overrightarrow}^{2}$,
即2|$\overrightarrow{a}$|×|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=${\overrightarrow}^{2}$,
2×$\frac{3}{2}$|$\overrightarrow$|×|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=${|\overrightarrow|}^{2}$;
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{1}{3}$,
即$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為$\frac{1}{3}$.
故選:C.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與模長(zhǎng)公式的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若 x2-5x+6=0,則x=2”的逆否命題是“若 x≠2,則x2-5x+6≠0” | |
B. | 命題“角α的終邊在第一象限,則α是銳角”的逆命題為真命題 | |
C. | 已知命題 p和 q,若p∨q 為假命題,則命題 p與q中必一真一假 | |
D. | 命題“若x>y,則 x>|y|”的逆命題是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=-x2+1 | C. | y=-e-x-ex | D. | y=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com