【題目】某市為了解本市萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,發(fā)現(xiàn)其成績服從正態(tài)分布,現(xiàn)從某校隨機(jī)抽取了名學(xué)生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.
(1)估算該校名學(xué)生成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)求這名學(xué)生成績?cè)?/span>內(nèi)的人數(shù);
(3)現(xiàn)從該校名考生成績?cè)?/span>的學(xué)生中隨機(jī)抽取兩人,該兩人成績排名(從高到低)在全市前名的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若,則,
【答案】(1);(2);(3).
【解析】試題分析:(1)直方圖中每個(gè)矩形的中點(diǎn)橫坐標(biāo)與該矩形的縱坐標(biāo)相乘后求和,即可得到該校名學(xué)生成績的平均值;(2)求出直方圖中最后兩個(gè)矩形的面積之和與總?cè)藬?shù)相乘即可求出這名學(xué)生成績?cè)?/span>內(nèi)的人數(shù);(3) 的所有可能取值為 分別求出各隨機(jī)變量的概率,從而可得分布列,由期望公式可得結(jié)果.
試題解析:(1)
(2).
(3),則.
.
所以該市前名的學(xué)生聽寫考試成績?cè)?/span>分以上.
上述名考生成績中分以上的有人.
隨機(jī)變量.于是
,
,
.
的分布列:
數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 且是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)若,對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè) 且,若,是否存在實(shí)數(shù)使函數(shù)在上的最大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng)規(guī)定,一次購物付款總額:
(1)如果標(biāo)價(jià)總額不超過200元,則不給予優(yōu)惠;
(2)如果標(biāo)價(jià)總額超過200元但不超過500元,則按標(biāo)價(jià)總額給予9折優(yōu)惠;
(3)如果標(biāo)價(jià)總額超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予8折優(yōu)惠.
某人兩次去購物,分別付款180元和423元,假設(shè)他一次性購買上述兩次同樣的商品,則應(yīng)付款( )
A.550元B.560元C.570元D.580元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1).在中,,,,、分別是、上的點(diǎn),且,將沿折起到的位置,使,如圖(2).
(1)求證:平面;
(2)當(dāng)點(diǎn)在何處時(shí),三棱錐體積最大,并求出最大值;
(3)當(dāng)三棱錐體積最大時(shí),求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的奇函數(shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),,若,,,則,,的大小關(guān)系正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力,進(jìn)行了主題分別為“運(yùn)算”、“推理”、“想象”、“建!彼膱(chǎng)競賽.規(guī)定:每場(chǎng)競賽前三名得分分別為、、(,且、、),選手的最終得分為各場(chǎng)得分之和.最終甲、乙、丙三人包攬了每場(chǎng)競賽的前三名,在四場(chǎng)競賽中,已知甲最終得分為分,乙最終得分為分,丙最終得分為分,且乙在“運(yùn)算”這場(chǎng)競賽中獲得了第一名,那么“運(yùn)算”這場(chǎng)競賽的第三名是( )
A.甲B.乙C.丙D.甲和丙都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形面積為2.
(1)求橢圓的方程;
(2)已知直線與橢圓交于兩點(diǎn),且與軸,軸交于兩點(diǎn).
(i)若,求的值;
(ii)若點(diǎn)的坐標(biāo)為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, ,,,,,點(diǎn)在上,且,將沿折起,使得平面平面 (如圖), 為中點(diǎn).
(1)求證: 平面;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求的值,并加以證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com