【題目】已知為定義在上的奇函數(shù),當時,有,且當時,,下列命題正確的是( )

A.B.函數(shù)在定義域上是周期為的函數(shù)

C.直線與函數(shù)的圖象有個交點D.函數(shù)的值域為

【答案】A

【解析】

推導出當時,,結合題中等式得出,可判斷出A選項的正誤;利用特殊值法可判斷B選項的正誤;作出函數(shù)在區(qū)間上的圖象,利用數(shù)形結合思想可判斷C選項的正誤;求出函數(shù)上的值域,利用奇函數(shù)的性質可得出函數(shù)的值域,可判斷出D選項的正誤.

函數(shù)上的奇函數(shù),,由題意可得

時,,,A選項正確;

時,,則,,,

則函數(shù)不是上周期為的函數(shù),B選項錯誤;

為奇數(shù)時,,

為偶數(shù),則,即當時,,

時,,若,且當時,,

,

時,則,,

時,,則,

所以,函數(shù)上的值域為,

由奇函數(shù)的性質可知,函數(shù)上的值域為,

由此可知,函數(shù)上的值域為,D選項錯誤;

如下圖所示:

由圖象可知,當時,函數(shù)與函數(shù)的圖象只有一個交點,

時,,此時,函數(shù)與函數(shù)沒有交點,

則函數(shù)與函數(shù)有且只有一個交點,C選項錯誤.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點在圓 上,點在圓 上,則下列說法錯誤的是

A. 的取值范圍為

B. 取值范圍為

C. 的取值范圍為

D. ,則實數(shù)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在斜三棱柱中,,側面是邊長為4的菱形,,,、分別為、的中點.

1)求證:平面;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象在點處的切線為,若函數(shù)滿足(其中為函數(shù)的定義域,當時,恒成立,則稱為函數(shù)的“轉折點”,已知函數(shù)在區(qū)間上存在一個“轉折點”,則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).

1)求的單調性;

2)若,對于任意,是否存在與有關的正常數(shù),使得成立?如果存在,求出一個符合條件的;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某餅屋進行為期天的五周年店慶活動,現(xiàn)策劃兩項有獎促銷活動,活動一:店慶期間每位顧客一次性消費滿元,可得元代金券一張;活動二:活動期間每位顧客每天有一次機會獲得一個一元或兩元紅包.根據(jù)前一年該店的銷售情況,統(tǒng)計了位顧客一次性消費的金額數(shù)(元),頻數(shù)分布表如下圖所示:

一次性消費金額數(shù)

人數(shù)

以這位顧客一次消費金額數(shù)的頻率分布代替每位顧客一次消費金額數(shù)的概率分布.

1)預計該店每天的客流量為人次,求這次店慶期間,商家每天送出代金券金額數(shù)的期望;

2)假設顧客獲得一元或兩元紅包的可能性相等,商家在店慶活動結束后會公布幸運數(shù)字,連續(xù)天參加返紅包的顧客,如果紅包金額總數(shù)與幸運數(shù)字一致,則可再獲得元的店慶幸運紅包一個.若公布的幸運數(shù)字是,求店慶期間一位連續(xù)天消費的顧客獲得紅包金額總數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,EAD的中點,ACBE相交于點O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人們常說的“幸福感指數(shù)”就是指某個人主觀地評價他對自己目前生活狀態(tài)的滿意程度的指標,常用區(qū)間內的一個數(shù)來表示,該數(shù)越接近表示滿意度越高.為了解某地區(qū)居民的幸福感情況,隨機對該地區(qū)的男、女居民各人進行了調查,調查數(shù)據(jù)如表所示:

幸福感指數(shù)

男居民人數(shù)

女居民人數(shù)

1)估算該地區(qū)居民幸福感指數(shù)的平均值;

2)若居民幸福感指數(shù)不小于,則認為其幸福.為了進一步了解居民的幸福滿意度,調查組又在該地區(qū)隨機抽取對夫妻進行調查,用表示他們之中幸福夫妻(夫妻二人都感到幸福)的對數(shù),求的期望(以樣本的頻率作為總體的概率).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

Ⅰ)若為函數(shù)的極小值點,求的取值范圍,并求的單調區(qū)間;

Ⅱ)若,,求的取值范圍.

查看答案和解析>>

同步練習冊答案