【題目】A已知直線的參數(shù)方程為(為參數(shù)),在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的方程為
(1)求圓的圓心的極坐標(biāo);
(2)判斷直線與圓的位置關(guān)系.
已知不等式的解集為
(1)求實(shí)數(shù)的值;
(2)若不等式對恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)直角坐標(biāo)為,極坐標(biāo)為(2)見解析.
(1).(2).
【解析】試題分析:A(1)根據(jù)極坐標(biāo)與普通方程的轉(zhuǎn)化公式,極坐標(biāo)方程化為普通方程;(2)先利用消參的方法得一般方程,再利用圓心到直線距離判定直線與圓位置關(guān)系.B(1)通過平方的方式解絕對值不等式(2)去絕對號轉(zhuǎn)化為分段函數(shù),求值域.
試題解析: (1) , 的直角坐標(biāo)為,極坐標(biāo)為
(2)直線的參數(shù)方程,( 為參數(shù))化為普通方程得
由(1)知,圓的圓心為半徑為,且到直線的距離直線與圓相切.
(1)由得,即
即
(2)設(shè),
則
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義的零點(diǎn)為的不動點(diǎn),已知函數(shù).
Ⅰ.當(dāng)時(shí),求函數(shù)的不動點(diǎn);
Ⅱ.對于任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動點(diǎn),求實(shí)數(shù)的取值范圍;
Ⅲ.若函數(shù)只有一個(gè)零點(diǎn)且,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)若,求函數(shù)在區(qū)間上的取值范圍;
(2)若,且對任意的,都有,求實(shí)數(shù)的取值范圍;
(3)若對任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓上的點(diǎn)A(2,3)關(guān)于直線x+2y=0的對稱點(diǎn)仍在圓上,且直線x-y+1=0被圓截得的弦長為2,求圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com