小波以游戲方式?jīng)Q定是去打球,唱歌還是去下棋,游戲規(guī)則為以O(shè)為頂點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取不同的兩點得到∠Ai0Aj(0°<∠AiOAj≤180°)i,j∈{1,2,3,4,5,6}若∠AiOAj為鈍角或平角就去打球,若∠AiOAj為直角就去唱歌,若∠AiOAj為銳角就去下棋,則小波去打球的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,則X>0就去打球,X=0就去唱歌,X<0就去下棋,X的所有可能取值為:-2,-1,0,1,列舉分別可得數(shù)量積為-2,-1,0,1時的情形種數(shù),由古典概型的概率公式可得答案.
解答: 解:這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,則X>0就去打球,X=0就去唱歌,X<0就去下棋,X的所有可能取值為:-2,-1,0,1,
數(shù)量積為-2的有
OA2
OA5
,共1種,
數(shù)量積為-1的有
OA1
OA5
,
OA1
OA6
,
OA2
OA4
OA2
OA6
,
OA3
OA4
OA3
OA5
共6種,
數(shù)量積為0的有
OA1
OA3
,
OA1
OA4
OA3
OA6
OA4
OA6
共4種,
數(shù)量積為1的有
OA1
OA2
OA2
OA3
,
OA4
OA5
,
OA5
OA6
共4種,
故所有的可能共15種,
所以小波去打球的概率為:P=
4
15

故答案為:
4
15
點評:本題考查古典概型及其概率公式,涉及平面向量的數(shù)量積的運算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為公比q>1的等比數(shù)列,若a2012和a2013是方程4x2-8x+3=0的兩個根,則a2013+2a2014+a2015=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.直線
x=2+
3
t
y=1+t
(t為參數(shù))與曲線ρ=2asinθ(θ為參數(shù)且a>0)相切,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)f(x)與時刻x(時)的關(guān)系為f(x)=|g(x)-a|+2a+
2
3
,x∈[0,24],其中g(shù)(x)=
1
2
sin(
π
4
x),x∈[0,2]
1
x
,x∈(2,24]
,a是與氣象有關(guān)的參數(shù),且a∈[0,
1
2
],若用每天f(x)的最大值為當(dāng)天的綜合放射性污染指數(shù),并記作M(a).
(1)令t=g(x),求t的取值范圍;
(2)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=lg(ax2-x+
1
16
a)的定義域為R,命題q:q:不等式
2x+1
<1+ax對一切正實數(shù)x均成立.如果,命題“p∨q”為真命題,命題“p∧q”為假命題,則實數(shù)a的取值范圍為( 。
A、a>1B、1≤a≤2
C、a>2D、無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,若滿足
y≥|x|
y≤ax+1
的點P表示的區(qū)域為三角形,則實數(shù)a的范圍是.
A、(-1,1)
B、(-∞,-1)
C、(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖中,圖一的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在如圖二畫出(單位:cm),P為原長方體上底面A1B1C1D1的中心.
(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖(直尺作圖);
(2)以D為原點建立適當(dāng)?shù)目臻g直角坐標(biāo)系(右手系),在圖中標(biāo)出坐標(biāo)軸,并按照給出的尺寸寫出點E,P的坐標(biāo);
(3)連接AP,證明:AP∥面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三棱錐的三個側(cè)面兩兩垂直,且側(cè)棱長均為
3
,則其外接球的表面積為( 。
A、18π
B、36π
C、9π
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一副52張撲克牌中任取5張牌,其中至少有2張牌花式相同是
 
事件.

查看答案和解析>>

同步練習(xí)冊答案