分析 (I)證明:PB⊥AC,AC⊥BD,利用線面垂直的判定定理證明AC⊥平面PBD;
(II)作OE⊥PB,連接CE,則CE⊥PB.∠CEO是二面角B-PD-C的平面角,即可求二面角B-PD-C的余弦值.
解答 (I)證明:∵PA=2$\sqrt{2}$,PB=2,AB=2,
∴PB2+AB2=PA2,
∴PB⊥BA,
∵側(cè)面PAB⊥底面ABCD,側(cè)面PAB∩底面ABCD=AB,
∴PB⊥底面ABCD,
∴PB⊥AC
∵底面ABCD是邊長為2的菱形,
∴AC⊥BD,
∵PB∩BD=B,
∴AC⊥平面PBD;
(II)解:作OE⊥PB,連接CE,則CE⊥PB.
∴∠CEO是二面角B-PD-C的平面角
在△PCD中,P二面角B-PD-C的C=PD=2$\sqrt{2}$,CD=2,
∴$\frac{1}{2}×2\sqrt{2}×CE=\frac{1}{2}×2×\sqrt{8-1}$,
∴CE=$\frac{\sqrt{14}}{2}$,
∵CO=$\sqrt{3}$,∴OE=$\frac{\sqrt{2}}{2}$,
∴cos∠CEO=$\frac{OE}{CE}$=$\frac{\sqrt{7}}{7}$.
點(diǎn)評 本題考查線面垂直的證明與二面角的求法,熟練掌握線面垂直的定理及二面角的平面角的作法是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=4 | B. | x=-2 | C. | x=-4 | D. | x=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
不很了解 | 了解 | 非常了解 | |
50歲以上 | 100 | 212 | y |
50歲以下 | x | 188 | z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 9 | C. | 12 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 162 | B. | 163 | C. | 164 | D. | 165 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com