分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(1),f′(1),求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤x2+x在(1,4)恒成立;
(3)問題轉(zhuǎn)化為討論a=-x3+x2+x的交點(diǎn)個(gè)數(shù),令m(x)=-x3+x2+x,(x>0),根據(jù)函數(shù)的單調(diào)性恒成m(x)的大致圖象,結(jié)合圖象,通過討論a的范圍求出函數(shù)的零點(diǎn)即可.
解答 解:(1)a=1時(shí),f(x)=x+$\frac{1}{x}$+lnx,(x>0),
f′(x)=1-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$,f′(1)=1,f(1)=2,
故切線方程是:y-2=x-1,
整理得:x-y+1=0;
(2)f′(x)=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{{x}^{2}+x-a}{{x}^{2}}$,
若f(x)在區(qū)間(1,4)內(nèi)單調(diào)遞增,
則x2+x-a≥0在(1,4)恒成立,
即a≤x2+x在(1,4)恒成立,
而y=x2+x的最小值是2,
故a≤2;
(3)g(x)=f′(x)-x=1-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$-x=$\frac{{-x}^{3}{+x}^{2}+x-a}{{x}^{2}}$,(x>0),
令h(x)=-x3+x2+x-a,(x>0),
討論函數(shù)g(x)=f′(x)-x的零點(diǎn)個(gè)數(shù),
即討論h(x)=-x3+x2+x-a,(x>0)的零點(diǎn)個(gè)數(shù),
即討論a=-x3+x2+x的交點(diǎn)個(gè)數(shù),
令m(x)=-x3+x2+x,(x>0),
m′(x)=-3x2+2x+1=-(3x+1)(x-1),
令m′(x)>0,解得:0<x<1,令m′(x)<0,解得:x>1,
∴m(x)在(0,1)遞增,在(1,+∞)遞減,
∴m(x)max=m(1)=1,x→0時(shí),m(x)→0,
x→+∞時(shí),m(x)→-∞,
如圖示:
,
結(jié)合圖象:a>1時(shí),g(x)無零點(diǎn),
a=1或a≤0時(shí),g(x)1個(gè)零點(diǎn),
0<a<1時(shí),g(x)2個(gè)零點(diǎn).
點(diǎn)評(píng) 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及數(shù)形結(jié)合思想,分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 過定點(diǎn)(0,1) | B. | 過定點(diǎn)(0,2) | C. | 過定點(diǎn)(a,1) | D. | 過定點(diǎn)(a,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{y^2}{16}-\frac{x^2}{4}$=1 | B. | y2-$\frac{x^2}{4}$=1 | C. | $\frac{y^2}{4}$-x2=1 | D. | $\frac{x^2}{4}$-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | [-2,+∞) | C. | (-3,+∞) | D. | (-$\frac{9}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥$\frac{1}{2}$ | B. | m≥2 | C. | 0<m<$\frac{1}{2}$ | D. | 0<m≤$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com