10.如圖,多面體ABCDE中,AB=AC,BE∥CD,BE⊥BC,平面BCDE⊥平面ABC,M為BC的中點(diǎn).
(Ⅰ)若N是線段AE的中點(diǎn),求證:MN∥平面ACD.
(Ⅱ)若N是AE上的動(dòng)點(diǎn)且BE=1,BC=2,CD=3,求證:DE⊥MN.

分析 (Ⅰ)取AB的中點(diǎn)P,連接PM,PN,證明平面MNP∥平面ACD,即可證明MN∥平面ACD.
(Ⅱ)連接EM,AM,DM,證明DE⊥平面AEM,即可證明DE⊥MN.

解答 證明:(Ⅰ)取AB的中點(diǎn)P,連接PM,PN,
由P,N為中點(diǎn)得PN∥BE∥CD,
∵PN?平面ACD,CD?平面ACD,∴PN∥平面ACD,
同理可得:PM∥平面ACD,
∵PN∩PM=P,
∴平面MNP∥平面ACD,
∵M(jìn)N?平面MNP,
∴MN∥平面ACD;
(Ⅱ)連接EM,AM,DM,
∵AB=AC且M為BC的中點(diǎn),
∴AM⊥BC,
∵平面BCDE⊥平面ABC,
∴AM⊥平面BCDE,
∴AM⊥DE,
∵在直角梯形BCDE中,BE=1,BC=2,CD=3,
∴△DEM中,DE=2$\sqrt{2}$,EM=$\sqrt{2}$,DM=$\sqrt{10}$,
∴DE2+EM2=DM2,
∴DE⊥EM,
∵AM∩EM=M,
∴DE⊥平面AEM,
∵M(jìn)N?平面AEM,
∴DE⊥MN.

點(diǎn)評(píng) 本題考查線面平行的判定,考查線面垂直的判定與性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)命題p:?x>0,log2x<2x+3,則¬p為( 。
A.?x>0,log2x≥2x+3B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3D.?x<0,log2x≥2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=cos$\frac{1}{2}$x的圖象向右平移π個(gè)單位得到函數(shù)y=g(x)的圖象,則g($\frac{π}{3}$)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,M,N是x軸上的動(dòng)點(diǎn),且|OM|2+|ON|2=8,過(guò)點(diǎn)M,N分別作斜率為$\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{3}}}{2}$的兩條直線交于點(diǎn)P,設(shè)點(diǎn)P的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過(guò)點(diǎn)Q(1,1)的兩條直線分別交曲線E于點(diǎn)A,C和B,D,且AB∥CD,求證直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在四棱錐P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(1)求證:PA⊥AB;
(2)設(shè)M為PD的中點(diǎn),求三棱錐M-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=cosx-cos2x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.城市發(fā)展面臨生活垃圾產(chǎn)生量逐年劇增的困擾,為了建設(shè)宜居城市,2017年1月,某市制定《生活垃圾分類(lèi)和減量工作方案》,到2020年,生活垃圾無(wú)害化處理率達(dá)到100%.如圖是該市2011~2016年生活垃圾年產(chǎn)生量(單位:萬(wàn)噸)的柱狀圖;如表是2016年年初與年末對(duì)該市四個(gè)社區(qū)各隨機(jī)抽取1000人調(diào)查參與垃圾分類(lèi)人數(shù)的統(tǒng)計(jì)表:

2016年初2016年末
社區(qū)A539568
社區(qū)B543585
社區(qū)C568600
社區(qū)D496513
注1:年份代碼1~6分別對(duì)應(yīng)年份2011~2016
注2:參與度=$\frac{參加垃圾分類(lèi)人數(shù)}{調(diào)查人數(shù)}$×100%
參與度的年增加值=年末參與度-年初參與度
(1)由圖可看出,該市年垃圾生產(chǎn)量y與年份代碼t之間具有較強(qiáng)的線性相關(guān)關(guān)系,運(yùn)用最小二乘法可得回歸直線方程為$\widehat{y}$=14.8t+$\widehat{a}$,預(yù)測(cè)2020年該年生活垃圾的產(chǎn)生量;
(2)已知2016年該市生活在垃圾無(wú)害化化年處理量為120萬(wàn)噸,且全市參與度每提高一個(gè)百分點(diǎn),都可使該市的生活垃圾無(wú)害化處理量增加6萬(wàn)噸,用樣本估計(jì)總體的思想解決以下問(wèn)題:
①由表的數(shù)據(jù)估計(jì)2016年該市參與度的年增加值,假設(shè)2017年該市參與度的年增加值與2016年大致相同,預(yù)測(cè)2017年全市生活垃圾無(wú)害化處理量;
②在2017年的基礎(chǔ)上,若2018年至2020年的參與度逐年增加5個(gè)百分點(diǎn),則到2020年該市能否實(shí)現(xiàn)生活垃圾無(wú)害化處理率達(dá)到100%的目標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.甲、乙、丙3位志愿者安排在周一至周六的六天中參加某項(xiàng)志愿者活動(dòng),要求每人參加一天且每天至多安排一人,并要求甲安排在另外兩位前面,不同的安排放法共有(  )
A.20種B.30種C.40種D.60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)F2作直線A,B交雙曲線右支于A,B兩點(diǎn),若|AF1|+|BF1|的最小值為11a,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案