若復(fù)數(shù)z滿足z(1+i)=2i,則復(fù)數(shù)z等于( 。
A、1+i
B、1-i
C、2+
1
2
i
D、2
考點(diǎn):復(fù)數(shù)相等的充要條件
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則即可得出.
解答: 解:∵復(fù)數(shù)z滿足z(1+i)=2i,
z=
2i
1+i
=
2i(1-i)
(1+i)(1-i)
=i+1.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:全集U={x|-3<x≤4}、A={x|-3<x≤-1}、B={x|-1<x≤4},則不正確的選項(xiàng)是( 。
A、A∪B=∪
B、A∩B=ϕ
C、A∪(∁UB)=U
D、(∁UA)∩(∁UB)=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
(
1
2
)
x
-4
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程x2+(m-3)x+m=0有兩個(gè)不同的實(shí)根x1,x2,且滿足x1>1,x2<1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈(0,2]時(shí),函數(shù)f(x)=ax2+4(a+1)x-3在x=2處取得最大值,則a的取值范圍是(  )
A、-
1
2
≤a<0
B、a≥-
1
2
C、-
1
2
≤a<0或 a>0
D、a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:A={x|y=2x+3}、B={y|x+4y=21},則A∩B=( 。
A、RB、ϕ
C、{1,5}D、{(1,5)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=4
3
y的準(zhǔn)線經(jīng)過(guò)雙曲線
y2
m2
-x2=1的一個(gè)焦點(diǎn),則雙曲線的離心率為( 。
A、
3
B、
6
2
C、
3
2
4
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)A(0,-3),動(dòng)點(diǎn)P在x軸上移動(dòng),動(dòng)點(diǎn)Q在y軸上,且∠APQ=
π
2
,點(diǎn)R在直線PQ上且滿足
PQ
=
1
2
QR

(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)R的軌跡C的方程;
(2)傾斜角為
π
4
的直線l0與軌跡C相切,求切線l0的方程;
(3)已知切線l0與y軸的交點(diǎn)為B,過(guò)點(diǎn)B的直線l與軌跡C交于M、N兩點(diǎn),點(diǎn)D(0,1).若∠MDN為鈍角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2-2ax+5(a為常數(shù)).
(1)如果函數(shù)圖象的對(duì)稱軸為x=3,求實(shí)數(shù)a的值并做出函數(shù)的圖象;
(2)求此函數(shù)在x∈[0,2]上的最小值;
(3)當(dāng)x∈[0,2]時(shí),此函數(shù)恒小于6,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案