4.求下列三角函數(shù)值:
(1)sin$\frac{4π}{3}$•cos$\frac{25π}{6}$•tan$\frac{5π}{4}$;
(2)sin[(2n+1)π-$\frac{2π}{3}$].

分析 直接利用誘導(dǎo)公式對(duì)(1)(2)化簡(jiǎn)求值.

解答 解:(1)sin$\frac{4π}{3}$•cos$\frac{25π}{6}$•tan$\frac{5π}{4}$=$-sin\frac{π}{3}•cos\frac{π}{6}•tan\frac{π}{4}$=-$\frac{\sqrt{3}}{2}•\frac{\sqrt{3}}{2}•1=-\frac{3}{4}$;
(2)sin[(2n+1)π-$\frac{2π}{3}$]=sin(2n$π+\frac{π}{3}$)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知隨機(jī)變量X服從正態(tài)分布N(2,σ2),且P(0≤X≤2)=0.3,則P(X>4)=0.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的圖象經(jīng)過(guò)點(diǎn)P(-$\frac{π}{12}$,0),與點(diǎn)P相鄰的最高點(diǎn)Q($\frac{π}{6}$,2).
(1)求φ和ω的值.
(2)當(dāng)x∈(-$\frac{π}{2}$,0)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)a為實(shí)數(shù),給出命題p:關(guān)于x的不等式${({\frac{1}{2}})^{|x|}}≥a$的解集為ϕ,命題q:函數(shù)$f(x)=lg({a{x^2}+({a-2})x+\frac{9}{8}})$的定義域?yàn)镽,若命題p∨q為真,命題p∧q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,已知B=45°,b=2.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)M(3,y0)是拋物線y2=2px(0<p<6)上一點(diǎn),且M到拋物線焦點(diǎn)的距離是M到直線$x=\frac{p}{2}$的距離的2倍,則p等于( 。
A.1B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)求函數(shù)f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
(2)證明:不等式x1-x+(1-x)x≤$\sqrt{2}$,在0<x<1上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,F(xiàn)是AB的中點(diǎn),P是O的中點(diǎn),O是PQ的中點(diǎn),EC與平面ABCD成30°角.
(1)求證:EG⊥平面ABCD;
(2)求證:HF∥平面EAD;
(3)若AD=4,求三棱錐D-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.等腰直角三角形的直角邊長(zhǎng)為1,則繞直角邊旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案