【題目】在直角坐標(biāo)系xOy中,直線經(jīng)過點(diǎn),傾斜角,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線.
(Ⅰ)求曲線C的直角坐標(biāo)方程并寫出直線l的參數(shù)方程;
(Ⅱ)直線l與曲線C的交點(diǎn)為A,B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
【答案】(1)曲線C的直角坐標(biāo)方程為,l的參數(shù)方程為(t為參數(shù));
(2).
【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得曲線C的直角坐標(biāo)方程,再根據(jù)直線參數(shù)方程的形式,即可求解直線的參數(shù)方程;
(2)由(1)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用參數(shù)的幾何意義,可求解.
(Ⅰ)因?yàn)?/span>,
所以,即
直線l的參數(shù)方程為(t為參數(shù))
(Ⅱ)把,代入圓的直角坐標(biāo)方程得
設(shè),是方程的兩根,則,
由參數(shù)t的幾何意義,
得
即點(diǎn)P到A、B兩點(diǎn)之間的距離之積為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實(shí)數(shù)a的取值范圍;
(3)的值域?yàn)?/span>函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,平面,,,,,,,是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體 ABCD-A1B1C1D1 的棱長為 1 , E 、F 分別是棱 AB 、BC上的動(dòng)點(diǎn) ,且AE = BF .求直線 A1E 與C1F 所成角的最小值(用反三角函數(shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)相等的兩個(gè)數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)若,求的前n項(xiàng)和;
(3)在(2)的條件下,數(shù)列是否存在不同的三項(xiàng)構(gòu)成等比數(shù)列?如果存在,請(qǐng)你求出所有符合題意的項(xiàng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時(shí)的收益為萬元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬元時(shí)的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①“”是“”的充分不必要條件;
②定義在上的偶函數(shù)的最大值為30;
③命題“,”的否定形式是“,”.其中正確說法的個(gè)數(shù)為
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記函數(shù)在上的最大值為,最小值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求不等式在上的解;
(2)設(shè),關(guān)于直線對(duì)稱的函數(shù)為,求證:當(dāng)時(shí),;
(3)若函數(shù)恰好在和兩處取得極值,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com