設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過右焦點(diǎn),且與橢圓W相交于兩點(diǎn).
(1)求的周長(zhǎng);
(2)如果為直角三角形,求直線的斜率.
(1)的周長(zhǎng)為;(2)直線的斜率,或時(shí),為直角三角形.
解析試題分析:(1)求的周長(zhǎng),這是焦點(diǎn)三角問題,解這一類問題,往往與定義有關(guān),本題可由橢圓定義得,,兩式相加即得的周長(zhǎng);(2)如果為直角三角形,求直線的斜率,由于沒教得那一個(gè)角為直角,故三種情況,,或,或,當(dāng)時(shí),此時(shí)直線的存在,設(shè)出直線方程,代入橢圓方程,設(shè),,由根與系數(shù)關(guān)系,得到關(guān)系式,再由,即可求出斜率的值,當(dāng)(與相同)時(shí),則點(diǎn)A在以線段為直徑的圓上,也在橢圓W上,求出點(diǎn)的坐標(biāo),從而可得直線的斜率.
(1)橢圓的長(zhǎng)半軸長(zhǎng),左焦點(diǎn),右焦點(diǎn), 2分
由橢圓的定義,得,,
所以的周長(zhǎng)為. 5分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cc/6/wxefa4.png" style="vertical-align:middle;" />為直角三角形,
所以,或,或,再由當(dāng)時(shí),
設(shè)直線的方程為,,, 6分
由 得 , 7分
所以 ,. 8分
由,得, 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fd/1/gngwb2.png" style="vertical-align:middle;" />,,
所以
, 10分
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條 件:
①P是第一象限的點(diǎn);
②P 點(diǎn)到l1的距離是P點(diǎn)到l2的距離的 ;
③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是∶.若能,求P點(diǎn)坐標(biāo);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)、,動(dòng)點(diǎn),且滿足、、
成等差數(shù)列.
(1)求點(diǎn)的軌跡的方程;
(2)若曲線的方程為,過點(diǎn)的直線與曲線相切,
求直線被曲線截得的線段長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在⊿ABC中,A(3,2)、B(-1,5),C點(diǎn)在直線上,若⊿ABC的面積為10,求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線l的方程為(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平行四邊形ABCD的兩條鄰邊AB、AD所在的直線方程為;,它的中心為M,求平行四邊形另外兩條邊CB、CD所在的直線方程及平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的頂點(diǎn)為A(3,-1),AB邊上的中線所在的直線方程為6x+10y-59=0,∠B的平分線所在的直線方程為x-4y+10=0,求BC邊所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線:,(不同時(shí)為0),:,
(1)若且,求實(shí)數(shù)的值;
(2)當(dāng)且時(shí),求直線與之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com