已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是.
(1)求a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條 件:
①P是第一象限的點;
②P 點到l1的距離是P點到l2的距離的 ;
③P點到l1的距離與P點到l3的距離之比是∶.若能,求P點坐標;若不能,說明理由.
(1)a = 3;(2)P(,)
解析試題分析:(1)將兩直線方程化為同系數(shù)方程,利用兩直線間距離公式計算得a = 3;(2)設點P(x0,y0),若P點滿足條件②,則P點在與l1、l2平行的直線:2x-y+c =" 0" 上,由平行線間的距離公式得=×,所以c =或c =,即2x0-y0+= 0或2x0-y0+= 0,若P點滿足條件③由點到直線的距離公式有x0-2y0+4= 0或3x0+2 = 0,又結合條件①解得,即點P(,)為能同時滿足三個條件的點.
試題解析:(1)l2方程變形為2x-y-= 0,
∴l(xiāng)1與l2的距離d ===,
∴|| =,由a>0解得a = 3.
(2)設點P(x0,y0),若P點滿足條件②,則P點在與l1、l2平行的直線:2x-y+c =" 0" 上.
且=×,解得c =或c =,∴2x0-y0+= 0或2x0-y0+= 0;
若P點滿足條件③,由點到直線的距離公式,有
=·,即|| = ||,
∴x0-2y0+4= 0或3x0+2 = 0;
由P在第一象限,顯然3x0+2 = 0不可能,
聯(lián)立方程2x0-y0+= 0和x0-2y0+4= 0,解得(舍去),
聯(lián)立方程2x0-y0+= 0和x0-2y0+4= 0,解得,
∴點P(,)即為能同時滿足三個條件的點.
考點:直線的方程與位置關系及距離公式的應用
科目:高中數(shù)學 來源: 題型:解答題
已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0(a,b∈R).
(1)若l1∥l2,求b的取值范圍;
(2)若l1⊥l2,求|ab|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設分別為橢圓的左、右焦點,斜率為的直線經(jīng)過右焦點,且與橢圓W相交于兩點.
(1)求的周長;
(2)如果為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.
(1) 直線l1過點(-3,-1),且l1⊥l2;
(2) 直線l1與l2平行,且坐標原點到l1、l2的距離相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com