若實數(shù)x,y滿足不等式組,則函數(shù)z=2x+y的最大值為   
【答案】分析:先根據(jù)約束條件畫出可行域,設z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內的點A時,從而得到z=2x+y的最大值即可.
解答:解:先根據(jù)約束條件畫出可行域,設z=2x+y,
將z的值轉化為直線z=2x+y在y軸上的截距,
當直線z=2x+y經過點A(1,0)時,z最大,
最大值為:2.
故答案為:2.
點評:本題只是直接考查線性規(guī)劃問題,是一道較為簡單的送分題.近年來高考線性規(guī)劃問題高考數(shù)學考試的熱點,數(shù)形結合是數(shù)學思想的重要手段之一,是連接代數(shù)和幾何的重要方法.隨著要求數(shù)學知識從書本到實際生活的呼聲不斷升高,線性規(guī)劃這一類新型數(shù)學應用問題要引起重視.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年重慶一中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省淄博市高考數(shù)學模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習冊答案